YES We show the termination of the TRS R: g(x,y) -> x g(x,y) -> y f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: f#_A(x1,x2,x3) = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(1,0,1,1)) x3 |0|_A() = (0,1,1,1) |1|_A() = (1,1,1,1) s_A(x1) = ((1,0,0,0),(0,0,0,0),(1,0,0,0),(1,1,0,0)) x1 + (1,0,1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: g(x,y) -> x r2: g(x,y) -> y r3: f(|0|(),|1|(),x) -> f(s(x),x,x) r4: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: (no SCCs)