YES We show the termination of the TRS R: half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(x))) -> s(half(x)) lastbit(|0|()) -> |0|() lastbit(s(|0|())) -> s(|0|()) lastbit(s(s(x))) -> lastbit(x) conv(|0|()) -> cons(nil(),|0|()) conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) p2: lastbit#(s(s(x))) -> lastbit#(x) p3: conv#(s(x)) -> conv#(half(s(x))) p4: conv#(s(x)) -> half#(s(x)) p5: conv#(s(x)) -> lastbit#(s(x)) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) The estimated dependency graph contains the following SCCs: {p3} {p1} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: conv#(s(x)) -> conv#(half(s(x))) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) The set of usable rules consists of r1, r2, r3 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: conv#_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(0,1,0,0)) x1 s_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (1,3,1,4) half_A(x1) = ((1,0,0,0),(0,0,0,0),(0,0,0,0),(1,0,0,0)) x1 + (0,2,4,1) |0|_A() = (1,1,5,4) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: half#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(1,1,0,1)) x1 s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,0,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: lastbit#(s(s(x))) -> lastbit#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(|0|())) -> |0|() r3: half(s(s(x))) -> s(half(x)) r4: lastbit(|0|()) -> |0|() r5: lastbit(s(|0|())) -> s(|0|()) r6: lastbit(s(s(x))) -> lastbit(x) r7: conv(|0|()) -> cons(nil(),|0|()) r8: conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: lastbit#_A(x1) = ((1,0,0,0),(0,1,0,0),(1,0,1,0),(0,1,0,1)) x1 s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,1,0,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains.