YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) f(|0|()) -> s(|0|()) f(s(x)) -> minus(s(x),g(f(x))) g(|0|()) -> |0|() g(s(x)) -> minus(s(x),f(g(x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: f#(s(x)) -> minus#(s(x),g(f(x))) p3: f#(s(x)) -> g#(f(x)) p4: f#(s(x)) -> f#(x) p5: g#(s(x)) -> minus#(s(x),f(g(x))) p6: g#(s(x)) -> f#(g(x)) p7: g#(s(x)) -> g#(x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) The estimated dependency graph contains the following SCCs: {p3, p4, p6, p7} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(x)) -> g#(x) p2: g#(s(x)) -> f#(g(x)) p3: f#(s(x)) -> f#(x) p4: f#(s(x)) -> g#(f(x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: g#_A(x1) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x1 s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,1,0),(1,0,0,0)) x1 + (6,13,1,1) f#_A(x1) = x1 + (3,7,7,14) g_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (2,1,3,1) f_A(x1) = ((1,0,0,0),(1,1,0,0),(1,0,0,0),(0,0,1,0)) x1 + (8,12,8,1) minus_A(x1,x2) = ((1,0,0,0),(0,1,0,0),(0,1,1,0),(0,1,1,0)) x1 + (1,19,1,1) |0|_A() = (1,2,6,2) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: f(|0|()) -> s(|0|()) r4: f(s(x)) -> minus(s(x),g(f(x))) r5: g(|0|()) -> |0|() r6: g(s(x)) -> minus(s(x),f(g(x))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: minus#_A(x1,x2) = ((1,0,0,0),(1,1,0,0),(0,0,1,0),(1,1,0,1)) x1 + ((1,0,0,0),(0,1,0,0),(1,1,1,0),(1,0,1,1)) x2 s_A(x1) = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)) x1 + (1,1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6 We remove them from the problem. Then no dependency pair remains.