YES We show the termination of the TRS R: average(s(x),y) -> average(x,s(y)) average(x,s(s(s(y)))) -> s(average(s(x),y)) average(|0|(),|0|()) -> |0|() average(|0|(),s(|0|())) -> |0|() average(|0|(),s(s(|0|()))) -> s(|0|()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: average#(s(x),y) -> average#(x,s(y)) p2: average#(x,s(s(s(y)))) -> average#(s(x),y) and R consists of: r1: average(s(x),y) -> average(x,s(y)) r2: average(x,s(s(s(y)))) -> s(average(s(x),y)) r3: average(|0|(),|0|()) -> |0|() r4: average(|0|(),s(|0|())) -> |0|() r5: average(|0|(),s(s(|0|()))) -> s(|0|()) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: average#(s(x),y) -> average#(x,s(y)) p2: average#(x,s(s(s(y)))) -> average#(s(x),y) and R consists of: r1: average(s(x),y) -> average(x,s(y)) r2: average(x,s(s(s(y)))) -> s(average(s(x),y)) r3: average(|0|(),|0|()) -> |0|() r4: average(|0|(),s(|0|())) -> |0|() r5: average(|0|(),s(s(|0|()))) -> s(|0|()) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^4 order: lexicographic order interpretations: average#_A(x1,x2) = ((1,0,0,0),(1,0,0,0),(1,0,0,0),(0,1,0,0)) x1 + x2 s_A(x1) = ((1,0,0,0),(0,0,0,0),(0,1,0,0),(0,0,0,0)) x1 + (1,1,1,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.