YES We show the termination of the TRS R: f(f(a(),a()),x) -> f(x,f(a(),f(a(),f(a(),a())))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(a(),a()),x) -> f#(x,f(a(),f(a(),f(a(),a())))) p2: f#(f(a(),a()),x) -> f#(a(),f(a(),f(a(),a()))) p3: f#(f(a(),a()),x) -> f#(a(),f(a(),a())) and R consists of: r1: f(f(a(),a()),x) -> f(x,f(a(),f(a(),f(a(),a())))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(a(),a()),x) -> f#(x,f(a(),f(a(),f(a(),a())))) and R consists of: r1: f(f(a(),a()),x) -> f(x,f(a(),f(a(),f(a(),a())))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0,0),(0,1,0),(0,1,1)) x1 + ((1,0,0),(0,1,0),(0,1,1)) x2 f_A(x1,x2) = ((1,0,0),(0,0,0),(0,1,0)) x2 + (0,1,0) a_A() = (0,2,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.