YES We show the termination of the TRS R: f(a(),f(x,a())) -> f(f(a(),f(f(a(),a()),x)),a()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(x,a())) -> f#(f(a(),f(f(a(),a()),x)),a()) p2: f#(a(),f(x,a())) -> f#(a(),f(f(a(),a()),x)) p3: f#(a(),f(x,a())) -> f#(f(a(),a()),x) p4: f#(a(),f(x,a())) -> f#(a(),a()) and R consists of: r1: f(a(),f(x,a())) -> f(f(a(),f(f(a(),a()),x)),a()) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(x,a())) -> f#(a(),f(f(a(),a()),x)) and R consists of: r1: f(a(),f(x,a())) -> f(f(a(),f(f(a(),a()),x)),a()) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: f#_A(x1,x2) = ((0,0,0),(1,0,0),(0,1,0)) x1 + ((1,0,0),(0,1,0),(0,1,1)) x2 a_A() = (2,1,1) f_A(x1,x2) = ((0,0,0),(1,0,0),(0,0,0)) x1 + ((0,0,0),(1,0,0),(0,0,0)) x2 + (1,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.