YES We show the termination of the TRS R: O(|0|()) -> |0|() +(|0|(),x) -> x +(x,|0|()) -> x +(O(x),O(y)) -> O(+(x,y)) +(O(x),I(y)) -> I(+(x,y)) +(I(x),O(y)) -> I(+(x,y)) +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) *(|0|(),x) -> |0|() *(x,|0|()) -> |0|() *(O(x),y) -> O(*(x,y)) *(I(x),y) -> +(O(*(x,y)),y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> O#(+(x,y)) p2: +#(O(x),O(y)) -> +#(x,y) p3: +#(O(x),I(y)) -> +#(x,y) p4: +#(I(x),O(y)) -> +#(x,y) p5: +#(I(x),I(y)) -> O#(+(+(x,y),I(|0|()))) p6: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p7: +#(I(x),I(y)) -> +#(x,y) p8: *#(O(x),y) -> O#(*(x,y)) p9: *#(O(x),y) -> *#(x,y) p10: *#(I(x),y) -> +#(O(*(x,y)),y) p11: *#(I(x),y) -> O#(*(x,y)) p12: *#(I(x),y) -> *#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) The estimated dependency graph contains the following SCCs: {p9, p12} {p2, p3, p4, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(I(x),y) -> *#(x,y) p2: *#(O(x),y) -> *#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: *#_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(0,1,0),(0,1,1)) x2 I_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) O_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> +#(x,y) p2: +#(I(x),I(y)) -> +#(x,y) p3: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p4: +#(O(x),I(y)) -> +#(x,y) p5: +#(I(x),O(y)) -> +#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: +#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 O_A(x1) = ((1,0,0),(1,1,0),(0,0,0)) x1 + (1,2,15) I_A(x1) = ((1,0,0),(1,1,0),(1,0,1)) x1 + (4,5,10) +_A(x1,x2) = ((1,0,0),(1,0,0),(1,0,0)) x1 + ((1,0,0),(1,0,0),(1,1,0)) x2 + (1,1,1) |0|_A() = (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.