YES We show the termination of the TRS R: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) active(U12(tt(),V2)) -> mark(U13(isNat(V2))) active(U13(tt())) -> mark(tt()) active(U21(tt(),V1)) -> mark(U22(isNat(V1))) active(U22(tt())) -> mark(tt()) active(U31(tt(),N)) -> mark(N) active(U41(tt(),M,N)) -> mark(s(plus(N,M))) active(and(tt(),X)) -> mark(X) active(isNat(|0|())) -> mark(tt()) active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) active(isNatKind(|0|())) -> mark(tt()) active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) active(isNatKind(s(V1))) -> mark(isNatKind(V1)) active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) mark(tt()) -> active(tt()) mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) mark(isNat(X)) -> active(isNat(X)) mark(U13(X)) -> active(U13(mark(X))) mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) mark(U22(X)) -> active(U22(mark(X))) mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) mark(s(X)) -> active(s(mark(X))) mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) mark(and(X1,X2)) -> active(and(mark(X1),X2)) mark(|0|()) -> active(|0|()) mark(isNatKind(X)) -> active(isNatKind(X)) U11(mark(X1),X2,X3) -> U11(X1,X2,X3) U11(X1,mark(X2),X3) -> U11(X1,X2,X3) U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) U11(active(X1),X2,X3) -> U11(X1,X2,X3) U11(X1,active(X2),X3) -> U11(X1,X2,X3) U11(X1,X2,active(X3)) -> U11(X1,X2,X3) U12(mark(X1),X2) -> U12(X1,X2) U12(X1,mark(X2)) -> U12(X1,X2) U12(active(X1),X2) -> U12(X1,X2) U12(X1,active(X2)) -> U12(X1,X2) isNat(mark(X)) -> isNat(X) isNat(active(X)) -> isNat(X) U13(mark(X)) -> U13(X) U13(active(X)) -> U13(X) U21(mark(X1),X2) -> U21(X1,X2) U21(X1,mark(X2)) -> U21(X1,X2) U21(active(X1),X2) -> U21(X1,X2) U21(X1,active(X2)) -> U21(X1,X2) U22(mark(X)) -> U22(X) U22(active(X)) -> U22(X) U31(mark(X1),X2) -> U31(X1,X2) U31(X1,mark(X2)) -> U31(X1,X2) U31(active(X1),X2) -> U31(X1,X2) U31(X1,active(X2)) -> U31(X1,X2) U41(mark(X1),X2,X3) -> U41(X1,X2,X3) U41(X1,mark(X2),X3) -> U41(X1,X2,X3) U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) U41(active(X1),X2,X3) -> U41(X1,X2,X3) U41(X1,active(X2),X3) -> U41(X1,X2,X3) U41(X1,X2,active(X3)) -> U41(X1,X2,X3) s(mark(X)) -> s(X) s(active(X)) -> s(X) plus(mark(X1),X2) -> plus(X1,X2) plus(X1,mark(X2)) -> plus(X1,X2) plus(active(X1),X2) -> plus(X1,X2) plus(X1,active(X2)) -> plus(X1,X2) and(mark(X1),X2) -> and(X1,X2) and(X1,mark(X2)) -> and(X1,X2) and(active(X1),X2) -> and(X1,X2) and(X1,active(X2)) -> and(X1,X2) isNatKind(mark(X)) -> isNatKind(X) isNatKind(active(X)) -> isNatKind(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V1,V2)) -> mark#(U12(isNat(V1),V2)) p2: active#(U11(tt(),V1,V2)) -> U12#(isNat(V1),V2) p3: active#(U11(tt(),V1,V2)) -> isNat#(V1) p4: active#(U12(tt(),V2)) -> mark#(U13(isNat(V2))) p5: active#(U12(tt(),V2)) -> U13#(isNat(V2)) p6: active#(U12(tt(),V2)) -> isNat#(V2) p7: active#(U13(tt())) -> mark#(tt()) p8: active#(U21(tt(),V1)) -> mark#(U22(isNat(V1))) p9: active#(U21(tt(),V1)) -> U22#(isNat(V1)) p10: active#(U21(tt(),V1)) -> isNat#(V1) p11: active#(U22(tt())) -> mark#(tt()) p12: active#(U31(tt(),N)) -> mark#(N) p13: active#(U41(tt(),M,N)) -> mark#(s(plus(N,M))) p14: active#(U41(tt(),M,N)) -> s#(plus(N,M)) p15: active#(U41(tt(),M,N)) -> plus#(N,M) p16: active#(and(tt(),X)) -> mark#(X) p17: active#(isNat(|0|())) -> mark#(tt()) p18: active#(isNat(plus(V1,V2))) -> mark#(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) p19: active#(isNat(plus(V1,V2))) -> U11#(and(isNatKind(V1),isNatKind(V2)),V1,V2) p20: active#(isNat(plus(V1,V2))) -> and#(isNatKind(V1),isNatKind(V2)) p21: active#(isNat(plus(V1,V2))) -> isNatKind#(V1) p22: active#(isNat(plus(V1,V2))) -> isNatKind#(V2) p23: active#(isNat(s(V1))) -> mark#(U21(isNatKind(V1),V1)) p24: active#(isNat(s(V1))) -> U21#(isNatKind(V1),V1) p25: active#(isNat(s(V1))) -> isNatKind#(V1) p26: active#(isNatKind(|0|())) -> mark#(tt()) p27: active#(isNatKind(plus(V1,V2))) -> mark#(and(isNatKind(V1),isNatKind(V2))) p28: active#(isNatKind(plus(V1,V2))) -> and#(isNatKind(V1),isNatKind(V2)) p29: active#(isNatKind(plus(V1,V2))) -> isNatKind#(V1) p30: active#(isNatKind(plus(V1,V2))) -> isNatKind#(V2) p31: active#(isNatKind(s(V1))) -> mark#(isNatKind(V1)) p32: active#(isNatKind(s(V1))) -> isNatKind#(V1) p33: active#(plus(N,|0|())) -> mark#(U31(and(isNat(N),isNatKind(N)),N)) p34: active#(plus(N,|0|())) -> U31#(and(isNat(N),isNatKind(N)),N) p35: active#(plus(N,|0|())) -> and#(isNat(N),isNatKind(N)) p36: active#(plus(N,|0|())) -> isNat#(N) p37: active#(plus(N,|0|())) -> isNatKind#(N) p38: active#(plus(N,s(M))) -> mark#(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) p39: active#(plus(N,s(M))) -> U41#(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N) p40: active#(plus(N,s(M))) -> and#(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))) p41: active#(plus(N,s(M))) -> and#(isNat(M),isNatKind(M)) p42: active#(plus(N,s(M))) -> isNat#(M) p43: active#(plus(N,s(M))) -> isNatKind#(M) p44: active#(plus(N,s(M))) -> and#(isNat(N),isNatKind(N)) p45: active#(plus(N,s(M))) -> isNat#(N) p46: active#(plus(N,s(M))) -> isNatKind#(N) p47: mark#(U11(X1,X2,X3)) -> active#(U11(mark(X1),X2,X3)) p48: mark#(U11(X1,X2,X3)) -> U11#(mark(X1),X2,X3) p49: mark#(U11(X1,X2,X3)) -> mark#(X1) p50: mark#(tt()) -> active#(tt()) p51: mark#(U12(X1,X2)) -> active#(U12(mark(X1),X2)) p52: mark#(U12(X1,X2)) -> U12#(mark(X1),X2) p53: mark#(U12(X1,X2)) -> mark#(X1) p54: mark#(isNat(X)) -> active#(isNat(X)) p55: mark#(U13(X)) -> active#(U13(mark(X))) p56: mark#(U13(X)) -> U13#(mark(X)) p57: mark#(U13(X)) -> mark#(X) p58: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p59: mark#(U21(X1,X2)) -> U21#(mark(X1),X2) p60: mark#(U21(X1,X2)) -> mark#(X1) p61: mark#(U22(X)) -> active#(U22(mark(X))) p62: mark#(U22(X)) -> U22#(mark(X)) p63: mark#(U22(X)) -> mark#(X) p64: mark#(U31(X1,X2)) -> active#(U31(mark(X1),X2)) p65: mark#(U31(X1,X2)) -> U31#(mark(X1),X2) p66: mark#(U31(X1,X2)) -> mark#(X1) p67: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p68: mark#(U41(X1,X2,X3)) -> U41#(mark(X1),X2,X3) p69: mark#(U41(X1,X2,X3)) -> mark#(X1) p70: mark#(s(X)) -> active#(s(mark(X))) p71: mark#(s(X)) -> s#(mark(X)) p72: mark#(s(X)) -> mark#(X) p73: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p74: mark#(plus(X1,X2)) -> plus#(mark(X1),mark(X2)) p75: mark#(plus(X1,X2)) -> mark#(X1) p76: mark#(plus(X1,X2)) -> mark#(X2) p77: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p78: mark#(and(X1,X2)) -> and#(mark(X1),X2) p79: mark#(and(X1,X2)) -> mark#(X1) p80: mark#(|0|()) -> active#(|0|()) p81: mark#(isNatKind(X)) -> active#(isNatKind(X)) p82: U11#(mark(X1),X2,X3) -> U11#(X1,X2,X3) p83: U11#(X1,mark(X2),X3) -> U11#(X1,X2,X3) p84: U11#(X1,X2,mark(X3)) -> U11#(X1,X2,X3) p85: U11#(active(X1),X2,X3) -> U11#(X1,X2,X3) p86: U11#(X1,active(X2),X3) -> U11#(X1,X2,X3) p87: U11#(X1,X2,active(X3)) -> U11#(X1,X2,X3) p88: U12#(mark(X1),X2) -> U12#(X1,X2) p89: U12#(X1,mark(X2)) -> U12#(X1,X2) p90: U12#(active(X1),X2) -> U12#(X1,X2) p91: U12#(X1,active(X2)) -> U12#(X1,X2) p92: isNat#(mark(X)) -> isNat#(X) p93: isNat#(active(X)) -> isNat#(X) p94: U13#(mark(X)) -> U13#(X) p95: U13#(active(X)) -> U13#(X) p96: U21#(mark(X1),X2) -> U21#(X1,X2) p97: U21#(X1,mark(X2)) -> U21#(X1,X2) p98: U21#(active(X1),X2) -> U21#(X1,X2) p99: U21#(X1,active(X2)) -> U21#(X1,X2) p100: U22#(mark(X)) -> U22#(X) p101: U22#(active(X)) -> U22#(X) p102: U31#(mark(X1),X2) -> U31#(X1,X2) p103: U31#(X1,mark(X2)) -> U31#(X1,X2) p104: U31#(active(X1),X2) -> U31#(X1,X2) p105: U31#(X1,active(X2)) -> U31#(X1,X2) p106: U41#(mark(X1),X2,X3) -> U41#(X1,X2,X3) p107: U41#(X1,mark(X2),X3) -> U41#(X1,X2,X3) p108: U41#(X1,X2,mark(X3)) -> U41#(X1,X2,X3) p109: U41#(active(X1),X2,X3) -> U41#(X1,X2,X3) p110: U41#(X1,active(X2),X3) -> U41#(X1,X2,X3) p111: U41#(X1,X2,active(X3)) -> U41#(X1,X2,X3) p112: s#(mark(X)) -> s#(X) p113: s#(active(X)) -> s#(X) p114: plus#(mark(X1),X2) -> plus#(X1,X2) p115: plus#(X1,mark(X2)) -> plus#(X1,X2) p116: plus#(active(X1),X2) -> plus#(X1,X2) p117: plus#(X1,active(X2)) -> plus#(X1,X2) p118: and#(mark(X1),X2) -> and#(X1,X2) p119: and#(X1,mark(X2)) -> and#(X1,X2) p120: and#(active(X1),X2) -> and#(X1,X2) p121: and#(X1,active(X2)) -> and#(X1,X2) p122: isNatKind#(mark(X)) -> isNatKind#(X) p123: isNatKind#(active(X)) -> isNatKind#(X) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p4, p8, p12, p13, p16, p18, p23, p27, p31, p33, p38, p47, p49, p51, p53, p54, p55, p57, p58, p60, p61, p63, p64, p66, p67, p69, p70, p72, p73, p75, p76, p77, p79, p81} {p88, p89, p90, p91} {p92, p93} {p94, p95} {p100, p101} {p112, p113} {p114, p115, p116, p117} {p82, p83, p84, p85, p86, p87} {p118, p119, p120, p121} {p122, p123} {p96, p97, p98, p99} {p102, p103, p104, p105} {p106, p107, p108, p109, p110, p111} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V1,V2)) -> mark#(U12(isNat(V1),V2)) p2: mark#(isNatKind(X)) -> active#(isNatKind(X)) p3: active#(plus(N,s(M))) -> mark#(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p6: active#(plus(N,|0|())) -> mark#(U31(and(isNat(N),isNatKind(N)),N)) p7: mark#(plus(X1,X2)) -> mark#(X2) p8: mark#(plus(X1,X2)) -> mark#(X1) p9: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p10: active#(isNatKind(s(V1))) -> mark#(isNatKind(V1)) p11: mark#(s(X)) -> mark#(X) p12: mark#(s(X)) -> active#(s(mark(X))) p13: active#(isNatKind(plus(V1,V2))) -> mark#(and(isNatKind(V1),isNatKind(V2))) p14: mark#(U41(X1,X2,X3)) -> mark#(X1) p15: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p16: active#(isNat(s(V1))) -> mark#(U21(isNatKind(V1),V1)) p17: mark#(U31(X1,X2)) -> mark#(X1) p18: mark#(U31(X1,X2)) -> active#(U31(mark(X1),X2)) p19: active#(isNat(plus(V1,V2))) -> mark#(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) p20: mark#(U22(X)) -> mark#(X) p21: mark#(U22(X)) -> active#(U22(mark(X))) p22: active#(and(tt(),X)) -> mark#(X) p23: mark#(U21(X1,X2)) -> mark#(X1) p24: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p25: active#(U41(tt(),M,N)) -> mark#(s(plus(N,M))) p26: mark#(U13(X)) -> mark#(X) p27: mark#(U13(X)) -> active#(U13(mark(X))) p28: active#(U31(tt(),N)) -> mark#(N) p29: mark#(isNat(X)) -> active#(isNat(X)) p30: active#(U21(tt(),V1)) -> mark#(U22(isNat(V1))) p31: mark#(U12(X1,X2)) -> mark#(X1) p32: mark#(U12(X1,X2)) -> active#(U12(mark(X1),X2)) p33: active#(U12(tt(),V2)) -> mark#(U13(isNat(V2))) p34: mark#(U11(X1,X2,X3)) -> mark#(X1) p35: mark#(U11(X1,X2,X3)) -> active#(U11(mark(X1),X2,X3)) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: active#_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 U11_A(x1,x2,x3) = ((1,0,0),(1,0,0),(0,0,0)) x1 tt_A() = (0,0,0) mark#_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 U12_A(x1,x2) = x1 + ((0,0,0),(0,0,0),(1,0,0)) x2 + (0,1,0) isNat_A(x1) = (0,0,0) isNatKind_A(x1) = ((0,0,0),(1,0,0),(0,0,0)) x1 plus_A(x1,x2) = x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + (1,1,0) s_A(x1) = ((1,0,0),(0,0,0),(1,0,0)) x1 + (1,0,0) U41_A(x1,x2,x3) = x1 + x2 + ((1,0,0),(1,0,0),(1,0,0)) x3 + (2,0,0) and_A(x1,x2) = ((1,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + (0,0,1) mark_A(x1) = ((1,0,0),(1,0,0),(1,0,0)) x1 + (0,1,1) |0|_A() = (1,0,0) U31_A(x1,x2) = x1 + x2 + (1,0,0) U21_A(x1,x2) = x1 + ((0,0,0),(0,0,0),(1,0,0)) x2 + (0,0,1) U22_A(x1) = x1 U13_A(x1) = x1 + (0,1,0) active_A(x1) = ((1,0,0),(1,0,0),(1,0,0)) x1 + (0,1,1) The next rules are strictly ordered: p6, p7, p8, p11, p14, p17, p28 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V1,V2)) -> mark#(U12(isNat(V1),V2)) p2: mark#(isNatKind(X)) -> active#(isNatKind(X)) p3: active#(plus(N,s(M))) -> mark#(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p6: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p7: active#(isNatKind(s(V1))) -> mark#(isNatKind(V1)) p8: mark#(s(X)) -> active#(s(mark(X))) p9: active#(isNatKind(plus(V1,V2))) -> mark#(and(isNatKind(V1),isNatKind(V2))) p10: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p11: active#(isNat(s(V1))) -> mark#(U21(isNatKind(V1),V1)) p12: mark#(U31(X1,X2)) -> active#(U31(mark(X1),X2)) p13: active#(isNat(plus(V1,V2))) -> mark#(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) p14: mark#(U22(X)) -> mark#(X) p15: mark#(U22(X)) -> active#(U22(mark(X))) p16: active#(and(tt(),X)) -> mark#(X) p17: mark#(U21(X1,X2)) -> mark#(X1) p18: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p19: active#(U41(tt(),M,N)) -> mark#(s(plus(N,M))) p20: mark#(U13(X)) -> mark#(X) p21: mark#(U13(X)) -> active#(U13(mark(X))) p22: mark#(isNat(X)) -> active#(isNat(X)) p23: active#(U21(tt(),V1)) -> mark#(U22(isNat(V1))) p24: mark#(U12(X1,X2)) -> mark#(X1) p25: mark#(U12(X1,X2)) -> active#(U12(mark(X1),X2)) p26: active#(U12(tt(),V2)) -> mark#(U13(isNat(V2))) p27: mark#(U11(X1,X2,X3)) -> mark#(X1) p28: mark#(U11(X1,X2,X3)) -> active#(U11(mark(X1),X2,X3)) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V1,V2)) -> mark#(U12(isNat(V1),V2)) p2: mark#(U11(X1,X2,X3)) -> active#(U11(mark(X1),X2,X3)) p3: active#(U12(tt(),V2)) -> mark#(U13(isNat(V2))) p4: mark#(U11(X1,X2,X3)) -> mark#(X1) p5: mark#(U12(X1,X2)) -> active#(U12(mark(X1),X2)) p6: active#(U21(tt(),V1)) -> mark#(U22(isNat(V1))) p7: mark#(U12(X1,X2)) -> mark#(X1) p8: mark#(isNat(X)) -> active#(isNat(X)) p9: active#(U41(tt(),M,N)) -> mark#(s(plus(N,M))) p10: mark#(U13(X)) -> active#(U13(mark(X))) p11: active#(and(tt(),X)) -> mark#(X) p12: mark#(U13(X)) -> mark#(X) p13: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p14: active#(isNat(plus(V1,V2))) -> mark#(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) p15: mark#(U21(X1,X2)) -> mark#(X1) p16: mark#(U22(X)) -> active#(U22(mark(X))) p17: active#(isNat(s(V1))) -> mark#(U21(isNatKind(V1),V1)) p18: mark#(U22(X)) -> mark#(X) p19: mark#(U31(X1,X2)) -> active#(U31(mark(X1),X2)) p20: active#(isNatKind(plus(V1,V2))) -> mark#(and(isNatKind(V1),isNatKind(V2))) p21: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p22: active#(isNatKind(s(V1))) -> mark#(isNatKind(V1)) p23: mark#(s(X)) -> active#(s(mark(X))) p24: active#(plus(N,s(M))) -> mark#(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) p25: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p26: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p27: mark#(and(X1,X2)) -> mark#(X1) p28: mark#(isNatKind(X)) -> active#(isNatKind(X)) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: active#_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 U11_A(x1,x2,x3) = (2,1,1) tt_A() = (1,1,1) mark#_A(x1) = (0,0,2) U12_A(x1,x2) = (2,1,1) isNat_A(x1) = (2,1,1) mark_A(x1) = (1,1,1) U13_A(x1) = (1,1,1) U21_A(x1,x2) = (2,1,1) U22_A(x1) = (1,1,1) U41_A(x1,x2,x3) = (2,1,1) s_A(x1) = (1,1,1) plus_A(x1,x2) = (2,0,1) and_A(x1,x2) = (2,1,1) isNatKind_A(x1) = (2,1,1) U31_A(x1,x2) = (1,1,1) active_A(x1) = (1,1,1) |0|_A() = (1,1,1) The next rules are strictly ordered: p10, p16, p19, p23 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V1,V2)) -> mark#(U12(isNat(V1),V2)) p2: mark#(U11(X1,X2,X3)) -> active#(U11(mark(X1),X2,X3)) p3: active#(U12(tt(),V2)) -> mark#(U13(isNat(V2))) p4: mark#(U11(X1,X2,X3)) -> mark#(X1) p5: mark#(U12(X1,X2)) -> active#(U12(mark(X1),X2)) p6: active#(U21(tt(),V1)) -> mark#(U22(isNat(V1))) p7: mark#(U12(X1,X2)) -> mark#(X1) p8: mark#(isNat(X)) -> active#(isNat(X)) p9: active#(U41(tt(),M,N)) -> mark#(s(plus(N,M))) p10: active#(and(tt(),X)) -> mark#(X) p11: mark#(U13(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p13: active#(isNat(plus(V1,V2))) -> mark#(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) p14: mark#(U21(X1,X2)) -> mark#(X1) p15: active#(isNat(s(V1))) -> mark#(U21(isNatKind(V1),V1)) p16: mark#(U22(X)) -> mark#(X) p17: active#(isNatKind(plus(V1,V2))) -> mark#(and(isNatKind(V1),isNatKind(V2))) p18: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p19: active#(isNatKind(s(V1))) -> mark#(isNatKind(V1)) p20: active#(plus(N,s(M))) -> mark#(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) p21: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p22: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p23: mark#(and(X1,X2)) -> mark#(X1) p24: mark#(isNatKind(X)) -> active#(isNatKind(X)) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(U11(tt(),V1,V2)) -> mark#(U12(isNat(V1),V2)) p2: mark#(isNatKind(X)) -> active#(isNatKind(X)) p3: active#(plus(N,s(M))) -> mark#(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) p4: mark#(and(X1,X2)) -> mark#(X1) p5: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p6: active#(isNatKind(s(V1))) -> mark#(isNatKind(V1)) p7: mark#(plus(X1,X2)) -> active#(plus(mark(X1),mark(X2))) p8: active#(isNatKind(plus(V1,V2))) -> mark#(and(isNatKind(V1),isNatKind(V2))) p9: mark#(U41(X1,X2,X3)) -> active#(U41(mark(X1),X2,X3)) p10: active#(isNat(s(V1))) -> mark#(U21(isNatKind(V1),V1)) p11: mark#(U22(X)) -> mark#(X) p12: mark#(U21(X1,X2)) -> mark#(X1) p13: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p14: active#(isNat(plus(V1,V2))) -> mark#(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) p15: mark#(U13(X)) -> mark#(X) p16: mark#(isNat(X)) -> active#(isNat(X)) p17: active#(and(tt(),X)) -> mark#(X) p18: mark#(U12(X1,X2)) -> mark#(X1) p19: mark#(U12(X1,X2)) -> active#(U12(mark(X1),X2)) p20: active#(U41(tt(),M,N)) -> mark#(s(plus(N,M))) p21: mark#(U11(X1,X2,X3)) -> mark#(X1) p22: mark#(U11(X1,X2,X3)) -> active#(U11(mark(X1),X2,X3)) p23: active#(U21(tt(),V1)) -> mark#(U22(isNat(V1))) p24: active#(U12(tt(),V2)) -> mark#(U13(isNat(V2))) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0),(1,1,0),(0,0,1)) x1 U11_A(x1,x2,x3) = ((1,0,0),(0,1,0),(1,0,0)) x1 + ((1,0,0),(0,1,0),(1,0,0)) x2 + ((1,0,0),(1,1,0),(1,0,0)) x3 tt_A() = (0,5,1) mark#_A(x1) = ((1,0,0),(1,1,0),(1,0,0)) x1 + (0,2,2) U12_A(x1,x2) = x1 + ((1,0,0),(1,1,0),(1,0,0)) x2 + (0,1,3) isNat_A(x1) = ((1,0,0),(0,1,0),(1,0,0)) x1 + (0,1,1) isNatKind_A(x1) = ((0,0,0),(1,0,0),(0,0,0)) x1 + (0,8,0) plus_A(x1,x2) = ((1,0,0),(1,0,0),(0,1,0)) x1 + x2 + (12,6,1) s_A(x1) = x1 + (3,7,1) U41_A(x1,x2,x3) = ((1,0,0),(0,0,0),(1,0,0)) x2 + ((1,0,0),(1,0,0),(0,0,0)) x3 + (15,10,18) and_A(x1,x2) = ((1,0,0),(0,1,0),(1,0,0)) x1 + ((1,0,0),(1,1,0),(1,1,0)) x2 + (0,1,0) mark_A(x1) = ((1,0,0),(0,1,0),(1,0,1)) x1 + (0,1,2) U21_A(x1,x2) = x1 + ((1,0,0),(1,0,0),(1,0,0)) x2 + (1,0,1) U22_A(x1) = x1 + (1,2,1) U13_A(x1) = x1 + (0,3,1) active_A(x1) = x1 + (0,0,1) U31_A(x1,x2) = ((0,0,0),(1,0,0),(0,1,0)) x1 + ((1,0,0),(1,1,0),(0,1,0)) x2 + (1,6,1) |0|_A() = (1,0,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p22, p23, p24 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X1,X2,X3)) -> mark#(X1) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: mark#_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 U11_A(x1,x2,x3) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + ((1,0,0),(1,1,0),(1,1,1)) x3 + (1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U12#(mark(X1),X2) -> U12#(X1,X2) p2: U12#(X1,active(X2)) -> U12#(X1,X2) p3: U12#(active(X1),X2) -> U12#(X1,X2) p4: U12#(X1,mark(X2)) -> U12#(X1,X2) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U12#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNat#(mark(X)) -> isNat#(X) p2: isNat#(active(X)) -> isNat#(X) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: isNat#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U13#(mark(X)) -> U13#(X) p2: U13#(active(X)) -> U13#(X) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U13#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 mark_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U22#(mark(X)) -> U22#(X) p2: U22#(active(X)) -> U22#(X) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U22#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: s#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 mark_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(mark(X1),X2) -> plus#(X1,X2) p2: plus#(X1,active(X2)) -> plus#(X1,X2) p3: plus#(active(X1),X2) -> plus#(X1,X2) p4: plus#(X1,mark(X2)) -> plus#(X1,X2) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: plus#_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(mark(X1),X2,X3) -> U11#(X1,X2,X3) p2: U11#(X1,X2,active(X3)) -> U11#(X1,X2,X3) p3: U11#(X1,active(X2),X3) -> U11#(X1,X2,X3) p4: U11#(active(X1),X2,X3) -> U11#(X1,X2,X3) p5: U11#(X1,X2,mark(X3)) -> U11#(X1,X2,X3) p6: U11#(X1,mark(X2),X3) -> U11#(X1,X2,X3) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U11#_A(x1,x2,x3) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + ((1,0,0),(1,1,0),(1,1,0)) x3 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(X1,active(X2)) -> and#(X1,X2) p3: and#(active(X1),X2) -> and#(X1,X2) p4: and#(X1,mark(X2)) -> and#(X1,X2) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: and#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNatKind#(mark(X)) -> isNatKind#(X) p2: isNatKind#(active(X)) -> isNatKind#(X) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: isNatKind#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2) -> U21#(X1,X2) p2: U21#(X1,active(X2)) -> U21#(X1,X2) p3: U21#(active(X1),X2) -> U21#(X1,X2) p4: U21#(X1,mark(X2)) -> U21#(X1,X2) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U21#_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U31#(mark(X1),X2) -> U31#(X1,X2) p2: U31#(X1,active(X2)) -> U31#(X1,X2) p3: U31#(active(X1),X2) -> U31#(X1,X2) p4: U31#(X1,mark(X2)) -> U31#(X1,X2) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U31#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2,X3) -> U41#(X1,X2,X3) p2: U41#(X1,X2,active(X3)) -> U41#(X1,X2,X3) p3: U41#(X1,active(X2),X3) -> U41#(X1,X2,X3) p4: U41#(active(X1),X2,X3) -> U41#(X1,X2,X3) p5: U41#(X1,X2,mark(X3)) -> U41#(X1,X2,X3) p6: U41#(X1,mark(X2),X3) -> U41#(X1,X2,X3) and R consists of: r1: active(U11(tt(),V1,V2)) -> mark(U12(isNat(V1),V2)) r2: active(U12(tt(),V2)) -> mark(U13(isNat(V2))) r3: active(U13(tt())) -> mark(tt()) r4: active(U21(tt(),V1)) -> mark(U22(isNat(V1))) r5: active(U22(tt())) -> mark(tt()) r6: active(U31(tt(),N)) -> mark(N) r7: active(U41(tt(),M,N)) -> mark(s(plus(N,M))) r8: active(and(tt(),X)) -> mark(X) r9: active(isNat(|0|())) -> mark(tt()) r10: active(isNat(plus(V1,V2))) -> mark(U11(and(isNatKind(V1),isNatKind(V2)),V1,V2)) r11: active(isNat(s(V1))) -> mark(U21(isNatKind(V1),V1)) r12: active(isNatKind(|0|())) -> mark(tt()) r13: active(isNatKind(plus(V1,V2))) -> mark(and(isNatKind(V1),isNatKind(V2))) r14: active(isNatKind(s(V1))) -> mark(isNatKind(V1)) r15: active(plus(N,|0|())) -> mark(U31(and(isNat(N),isNatKind(N)),N)) r16: active(plus(N,s(M))) -> mark(U41(and(and(isNat(M),isNatKind(M)),and(isNat(N),isNatKind(N))),M,N)) r17: mark(U11(X1,X2,X3)) -> active(U11(mark(X1),X2,X3)) r18: mark(tt()) -> active(tt()) r19: mark(U12(X1,X2)) -> active(U12(mark(X1),X2)) r20: mark(isNat(X)) -> active(isNat(X)) r21: mark(U13(X)) -> active(U13(mark(X))) r22: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r23: mark(U22(X)) -> active(U22(mark(X))) r24: mark(U31(X1,X2)) -> active(U31(mark(X1),X2)) r25: mark(U41(X1,X2,X3)) -> active(U41(mark(X1),X2,X3)) r26: mark(s(X)) -> active(s(mark(X))) r27: mark(plus(X1,X2)) -> active(plus(mark(X1),mark(X2))) r28: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r29: mark(|0|()) -> active(|0|()) r30: mark(isNatKind(X)) -> active(isNatKind(X)) r31: U11(mark(X1),X2,X3) -> U11(X1,X2,X3) r32: U11(X1,mark(X2),X3) -> U11(X1,X2,X3) r33: U11(X1,X2,mark(X3)) -> U11(X1,X2,X3) r34: U11(active(X1),X2,X3) -> U11(X1,X2,X3) r35: U11(X1,active(X2),X3) -> U11(X1,X2,X3) r36: U11(X1,X2,active(X3)) -> U11(X1,X2,X3) r37: U12(mark(X1),X2) -> U12(X1,X2) r38: U12(X1,mark(X2)) -> U12(X1,X2) r39: U12(active(X1),X2) -> U12(X1,X2) r40: U12(X1,active(X2)) -> U12(X1,X2) r41: isNat(mark(X)) -> isNat(X) r42: isNat(active(X)) -> isNat(X) r43: U13(mark(X)) -> U13(X) r44: U13(active(X)) -> U13(X) r45: U21(mark(X1),X2) -> U21(X1,X2) r46: U21(X1,mark(X2)) -> U21(X1,X2) r47: U21(active(X1),X2) -> U21(X1,X2) r48: U21(X1,active(X2)) -> U21(X1,X2) r49: U22(mark(X)) -> U22(X) r50: U22(active(X)) -> U22(X) r51: U31(mark(X1),X2) -> U31(X1,X2) r52: U31(X1,mark(X2)) -> U31(X1,X2) r53: U31(active(X1),X2) -> U31(X1,X2) r54: U31(X1,active(X2)) -> U31(X1,X2) r55: U41(mark(X1),X2,X3) -> U41(X1,X2,X3) r56: U41(X1,mark(X2),X3) -> U41(X1,X2,X3) r57: U41(X1,X2,mark(X3)) -> U41(X1,X2,X3) r58: U41(active(X1),X2,X3) -> U41(X1,X2,X3) r59: U41(X1,active(X2),X3) -> U41(X1,X2,X3) r60: U41(X1,X2,active(X3)) -> U41(X1,X2,X3) r61: s(mark(X)) -> s(X) r62: s(active(X)) -> s(X) r63: plus(mark(X1),X2) -> plus(X1,X2) r64: plus(X1,mark(X2)) -> plus(X1,X2) r65: plus(active(X1),X2) -> plus(X1,X2) r66: plus(X1,active(X2)) -> plus(X1,X2) r67: and(mark(X1),X2) -> and(X1,X2) r68: and(X1,mark(X2)) -> and(X1,X2) r69: and(active(X1),X2) -> and(X1,X2) r70: and(X1,active(X2)) -> and(X1,X2) r71: isNatKind(mark(X)) -> isNatKind(X) r72: isNatKind(active(X)) -> isNatKind(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: U41#_A(x1,x2,x3) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + ((1,0,0),(1,1,0),(1,1,0)) x3 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains.