YES We show the termination of the TRS R: a__f(a(),X,X) -> a__f(X,a__b(),b()) a__b() -> a() mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) mark(b()) -> a__b() mark(a()) -> a() a__f(X1,X2,X3) -> f(X1,X2,X3) a__b() -> b() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(a(),X,X) -> a__f#(X,a__b(),b()) p2: a__f#(a(),X,X) -> a__b#() p3: mark#(f(X1,X2,X3)) -> a__f#(X1,mark(X2),X3) p4: mark#(f(X1,X2,X3)) -> mark#(X2) p5: mark#(b()) -> a__b#() and R consists of: r1: a__f(a(),X,X) -> a__f(X,a__b(),b()) r2: a__b() -> a() r3: mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) r4: mark(b()) -> a__b() r5: mark(a()) -> a() r6: a__f(X1,X2,X3) -> f(X1,X2,X3) r7: a__b() -> b() The estimated dependency graph contains the following SCCs: {p4} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X1,X2,X3)) -> mark#(X2) and R consists of: r1: a__f(a(),X,X) -> a__f(X,a__b(),b()) r2: a__b() -> a() r3: mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) r4: mark(b()) -> a__b() r5: mark(a()) -> a() r6: a__f(X1,X2,X3) -> f(X1,X2,X3) r7: a__b() -> b() The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: mark#_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 f_A(x1,x2,x3) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + ((1,0,0),(1,1,0),(1,1,1)) x3 + (1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(a(),X,X) -> a__f#(X,a__b(),b()) and R consists of: r1: a__f(a(),X,X) -> a__f(X,a__b(),b()) r2: a__b() -> a() r3: mark(f(X1,X2,X3)) -> a__f(X1,mark(X2),X3) r4: mark(b()) -> a__b() r5: mark(a()) -> a() r6: a__f(X1,X2,X3) -> f(X1,X2,X3) r7: a__b() -> b() The set of usable rules consists of r2, r7 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: a__f#_A(x1,x2,x3) = x1 + x3 a_A() = (2,1,1) a__b_A() = (3,2,2) b_A() = (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.