YES We show the termination of the TRS R: active(and(true(),X)) -> mark(X) active(and(false(),Y)) -> mark(false()) active(if(true(),X,Y)) -> mark(X) active(if(false(),X,Y)) -> mark(Y) active(add(|0|(),X)) -> mark(X) active(add(s(X),Y)) -> mark(s(add(X,Y))) active(first(|0|(),X)) -> mark(nil()) active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) active(from(X)) -> mark(cons(X,from(s(X)))) mark(and(X1,X2)) -> active(and(mark(X1),X2)) mark(true()) -> active(true()) mark(false()) -> active(false()) mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) mark(add(X1,X2)) -> active(add(mark(X1),X2)) mark(|0|()) -> active(|0|()) mark(s(X)) -> active(s(X)) mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(cons(X1,X2)) -> active(cons(X1,X2)) mark(from(X)) -> active(from(X)) and(mark(X1),X2) -> and(X1,X2) and(X1,mark(X2)) -> and(X1,X2) and(active(X1),X2) -> and(X1,X2) and(X1,active(X2)) -> and(X1,X2) if(mark(X1),X2,X3) -> if(X1,X2,X3) if(X1,mark(X2),X3) -> if(X1,X2,X3) if(X1,X2,mark(X3)) -> if(X1,X2,X3) if(active(X1),X2,X3) -> if(X1,X2,X3) if(X1,active(X2),X3) -> if(X1,X2,X3) if(X1,X2,active(X3)) -> if(X1,X2,X3) add(mark(X1),X2) -> add(X1,X2) add(X1,mark(X2)) -> add(X1,X2) add(active(X1),X2) -> add(X1,X2) add(X1,active(X2)) -> add(X1,X2) s(mark(X)) -> s(X) s(active(X)) -> s(X) first(mark(X1),X2) -> first(X1,X2) first(X1,mark(X2)) -> first(X1,X2) first(active(X1),X2) -> first(X1,X2) first(X1,active(X2)) -> first(X1,X2) cons(mark(X1),X2) -> cons(X1,X2) cons(X1,mark(X2)) -> cons(X1,X2) cons(active(X1),X2) -> cons(X1,X2) cons(X1,active(X2)) -> cons(X1,X2) from(mark(X)) -> from(X) from(active(X)) -> from(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: active#(and(false(),Y)) -> mark#(false()) p3: active#(if(true(),X,Y)) -> mark#(X) p4: active#(if(false(),X,Y)) -> mark#(Y) p5: active#(add(|0|(),X)) -> mark#(X) p6: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p7: active#(add(s(X),Y)) -> s#(add(X,Y)) p8: active#(add(s(X),Y)) -> add#(X,Y) p9: active#(first(|0|(),X)) -> mark#(nil()) p10: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p11: active#(first(s(X),cons(Y,Z))) -> cons#(Y,first(X,Z)) p12: active#(first(s(X),cons(Y,Z))) -> first#(X,Z) p13: active#(from(X)) -> mark#(cons(X,from(s(X)))) p14: active#(from(X)) -> cons#(X,from(s(X))) p15: active#(from(X)) -> from#(s(X)) p16: active#(from(X)) -> s#(X) p17: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) p18: mark#(and(X1,X2)) -> and#(mark(X1),X2) p19: mark#(and(X1,X2)) -> mark#(X1) p20: mark#(true()) -> active#(true()) p21: mark#(false()) -> active#(false()) p22: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p23: mark#(if(X1,X2,X3)) -> if#(mark(X1),X2,X3) p24: mark#(if(X1,X2,X3)) -> mark#(X1) p25: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p26: mark#(add(X1,X2)) -> add#(mark(X1),X2) p27: mark#(add(X1,X2)) -> mark#(X1) p28: mark#(|0|()) -> active#(|0|()) p29: mark#(s(X)) -> active#(s(X)) p30: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p31: mark#(first(X1,X2)) -> first#(mark(X1),mark(X2)) p32: mark#(first(X1,X2)) -> mark#(X1) p33: mark#(first(X1,X2)) -> mark#(X2) p34: mark#(nil()) -> active#(nil()) p35: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p36: mark#(from(X)) -> active#(from(X)) p37: and#(mark(X1),X2) -> and#(X1,X2) p38: and#(X1,mark(X2)) -> and#(X1,X2) p39: and#(active(X1),X2) -> and#(X1,X2) p40: and#(X1,active(X2)) -> and#(X1,X2) p41: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p42: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) p43: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p44: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p45: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p46: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p47: add#(mark(X1),X2) -> add#(X1,X2) p48: add#(X1,mark(X2)) -> add#(X1,X2) p49: add#(active(X1),X2) -> add#(X1,X2) p50: add#(X1,active(X2)) -> add#(X1,X2) p51: s#(mark(X)) -> s#(X) p52: s#(active(X)) -> s#(X) p53: first#(mark(X1),X2) -> first#(X1,X2) p54: first#(X1,mark(X2)) -> first#(X1,X2) p55: first#(active(X1),X2) -> first#(X1,X2) p56: first#(X1,active(X2)) -> first#(X1,X2) p57: cons#(mark(X1),X2) -> cons#(X1,X2) p58: cons#(X1,mark(X2)) -> cons#(X1,X2) p59: cons#(active(X1),X2) -> cons#(X1,X2) p60: cons#(X1,active(X2)) -> cons#(X1,X2) p61: from#(mark(X)) -> from#(X) p62: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1, p3, p4, p5, p6, p10, p13, p17, p19, p22, p24, p25, p27, p29, p30, p32, p33, p35, p36} {p51, p52} {p47, p48, p49, p50} {p57, p58, p59, p60} {p53, p54, p55, p56} {p61, p62} {p37, p38, p39, p40} {p41, p42, p43, p44, p45, p46} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(and(true(),X)) -> mark#(X) p2: mark#(from(X)) -> active#(from(X)) p3: active#(from(X)) -> mark#(cons(X,from(s(X)))) p4: mark#(cons(X1,X2)) -> active#(cons(X1,X2)) p5: active#(first(s(X),cons(Y,Z))) -> mark#(cons(Y,first(X,Z))) p6: mark#(first(X1,X2)) -> mark#(X2) p7: mark#(first(X1,X2)) -> mark#(X1) p8: mark#(first(X1,X2)) -> active#(first(mark(X1),mark(X2))) p9: active#(add(s(X),Y)) -> mark#(s(add(X,Y))) p10: mark#(s(X)) -> active#(s(X)) p11: active#(add(|0|(),X)) -> mark#(X) p12: mark#(add(X1,X2)) -> mark#(X1) p13: mark#(add(X1,X2)) -> active#(add(mark(X1),X2)) p14: active#(if(false(),X,Y)) -> mark#(Y) p15: mark#(if(X1,X2,X3)) -> mark#(X1) p16: mark#(if(X1,X2,X3)) -> active#(if(mark(X1),X2,X3)) p17: active#(if(true(),X,Y)) -> mark#(X) p18: mark#(and(X1,X2)) -> mark#(X1) p19: mark#(and(X1,X2)) -> active#(and(mark(X1),X2)) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: active#_A(x1) = x1 + (0,0,4) and_A(x1,x2) = x1 + x2 + (0,1,1) true_A() = (2,1,1) mark#_A(x1) = ((1,0,0),(0,0,0),(1,0,0)) x1 + (1,0,0) from_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (3,1,1) cons_A(x1,x2) = x1 + (1,1,1) s_A(x1) = (5,1,1) first_A(x1,x2) = ((1,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(1,0,0),(1,0,0)) x2 + (1,1,1) mark_A(x1) = x1 + (0,1,1) add_A(x1,x2) = ((1,0,0),(1,0,0),(0,0,0)) x1 + x2 + (5,1,1) |0|_A() = (1,1,1) if_A(x1,x2,x3) = x1 + x2 + ((1,0,0),(1,0,0),(0,0,0)) x3 + (5,1,1) false_A() = (1,1,1) active_A(x1) = x1 + (0,1,1) nil_A() = (2,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p19 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(and(X1,X2)) -> mark#(X1) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: mark#_A(x1) = ((1,0,0),(0,0,0),(1,1,0)) x1 and_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: s#(mark(X)) -> s#(X) p2: s#(active(X)) -> s#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: s#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 mark_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(mark(X1),X2) -> add#(X1,X2) p2: add#(X1,active(X2)) -> add#(X1,X2) p3: add#(active(X1),X2) -> add#(X1,X2) p4: add#(X1,mark(X2)) -> add#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: add#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: cons#(mark(X1),X2) -> cons#(X1,X2) p2: cons#(X1,active(X2)) -> cons#(X1,X2) p3: cons#(active(X1),X2) -> cons#(X1,X2) p4: cons#(X1,mark(X2)) -> cons#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: cons#_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(mark(X1),X2) -> first#(X1,X2) p2: first#(X1,active(X2)) -> first#(X1,X2) p3: first#(active(X1),X2) -> first#(X1,X2) p4: first#(X1,mark(X2)) -> first#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: first#_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: from#(mark(X)) -> from#(X) p2: from#(active(X)) -> from#(X) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: from#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(mark(X1),X2) -> and#(X1,X2) p2: and#(X1,active(X2)) -> and#(X1,X2) p3: and#(active(X1),X2) -> and#(X1,X2) p4: and#(X1,mark(X2)) -> and#(X1,X2) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: and#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(mark(X1),X2,X3) -> if#(X1,X2,X3) p2: if#(X1,X2,active(X3)) -> if#(X1,X2,X3) p3: if#(X1,active(X2),X3) -> if#(X1,X2,X3) p4: if#(active(X1),X2,X3) -> if#(X1,X2,X3) p5: if#(X1,X2,mark(X3)) -> if#(X1,X2,X3) p6: if#(X1,mark(X2),X3) -> if#(X1,X2,X3) and R consists of: r1: active(and(true(),X)) -> mark(X) r2: active(and(false(),Y)) -> mark(false()) r3: active(if(true(),X,Y)) -> mark(X) r4: active(if(false(),X,Y)) -> mark(Y) r5: active(add(|0|(),X)) -> mark(X) r6: active(add(s(X),Y)) -> mark(s(add(X,Y))) r7: active(first(|0|(),X)) -> mark(nil()) r8: active(first(s(X),cons(Y,Z))) -> mark(cons(Y,first(X,Z))) r9: active(from(X)) -> mark(cons(X,from(s(X)))) r10: mark(and(X1,X2)) -> active(and(mark(X1),X2)) r11: mark(true()) -> active(true()) r12: mark(false()) -> active(false()) r13: mark(if(X1,X2,X3)) -> active(if(mark(X1),X2,X3)) r14: mark(add(X1,X2)) -> active(add(mark(X1),X2)) r15: mark(|0|()) -> active(|0|()) r16: mark(s(X)) -> active(s(X)) r17: mark(first(X1,X2)) -> active(first(mark(X1),mark(X2))) r18: mark(nil()) -> active(nil()) r19: mark(cons(X1,X2)) -> active(cons(X1,X2)) r20: mark(from(X)) -> active(from(X)) r21: and(mark(X1),X2) -> and(X1,X2) r22: and(X1,mark(X2)) -> and(X1,X2) r23: and(active(X1),X2) -> and(X1,X2) r24: and(X1,active(X2)) -> and(X1,X2) r25: if(mark(X1),X2,X3) -> if(X1,X2,X3) r26: if(X1,mark(X2),X3) -> if(X1,X2,X3) r27: if(X1,X2,mark(X3)) -> if(X1,X2,X3) r28: if(active(X1),X2,X3) -> if(X1,X2,X3) r29: if(X1,active(X2),X3) -> if(X1,X2,X3) r30: if(X1,X2,active(X3)) -> if(X1,X2,X3) r31: add(mark(X1),X2) -> add(X1,X2) r32: add(X1,mark(X2)) -> add(X1,X2) r33: add(active(X1),X2) -> add(X1,X2) r34: add(X1,active(X2)) -> add(X1,X2) r35: s(mark(X)) -> s(X) r36: s(active(X)) -> s(X) r37: first(mark(X1),X2) -> first(X1,X2) r38: first(X1,mark(X2)) -> first(X1,X2) r39: first(active(X1),X2) -> first(X1,X2) r40: first(X1,active(X2)) -> first(X1,X2) r41: cons(mark(X1),X2) -> cons(X1,X2) r42: cons(X1,mark(X2)) -> cons(X1,X2) r43: cons(active(X1),X2) -> cons(X1,X2) r44: cons(X1,active(X2)) -> cons(X1,X2) r45: from(mark(X)) -> from(X) r46: from(active(X)) -> from(X) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: if#_A(x1,x2,x3) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + ((1,0,0),(1,1,0),(1,1,0)) x3 mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) active_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 We remove them from the problem. Then no dependency pair remains.