YES We show the termination of the TRS R: quot(|0|(),s(y),s(z)) -> |0|() quot(s(x),s(y),z) -> quot(x,y,z) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y),z) -> quot#(x,y,z) p2: plus#(s(x),y) -> plus#(x,y) p3: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) p4: quot#(x,|0|(),s(z)) -> plus#(z,s(|0|())) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The estimated dependency graph contains the following SCCs: {p1, p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y),z) -> quot#(x,y,z) p2: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of r3, r4 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: quot#_A(x1,x2,x3) = ((1,0,0),(1,0,0),(0,0,0)) x1 + ((1,0,0),(0,1,0),(0,1,1)) x3 s_A(x1) = ((1,0,0),(1,0,0),(1,1,0)) x1 + (3,1,1) |0|_A() = (1,1,1) plus_A(x1,x2) = ((1,0,0),(1,0,0),(1,1,0)) x1 + ((1,0,0),(1,1,0),(0,0,1)) x2 + (1,0,0) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of r3, r4 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: quot#_A(x1,x2,x3) = ((0,0,0),(1,0,0),(0,1,0)) x1 + ((0,0,0),(0,0,0),(1,0,0)) x2 |0|_A() = (4,1,1) s_A(x1) = (1,1,3) plus_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 + x2 + (2,0,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: plus#_A(x1,x2) = x1 + ((0,0,0),(1,0,0),(0,1,0)) x2 s_A(x1) = ((1,0,0),(0,0,0),(1,1,0)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.