YES We show the termination of the TRS R: f(|0|()) -> s(|0|()) f(s(|0|())) -> s(s(|0|())) f(s(|0|())) -> *(s(s(|0|())),f(|0|())) f(+(x,s(|0|()))) -> +(s(s(|0|())),f(x)) f(+(x,y)) -> *(f(x),f(y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(|0|())) -> f#(|0|()) p2: f#(+(x,s(|0|()))) -> f#(x) p3: f#(+(x,y)) -> f#(x) p4: f#(+(x,y)) -> f#(y) and R consists of: r1: f(|0|()) -> s(|0|()) r2: f(s(|0|())) -> s(s(|0|())) r3: f(s(|0|())) -> *(s(s(|0|())),f(|0|())) r4: f(+(x,s(|0|()))) -> +(s(s(|0|())),f(x)) r5: f(+(x,y)) -> *(f(x),f(y)) The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(+(x,s(|0|()))) -> f#(x) p2: f#(+(x,y)) -> f#(y) p3: f#(+(x,y)) -> f#(x) and R consists of: r1: f(|0|()) -> s(|0|()) r2: f(s(|0|())) -> s(s(|0|())) r3: f(s(|0|())) -> *(s(s(|0|())),f(|0|())) r4: f(+(x,s(|0|()))) -> +(s(s(|0|())),f(x)) r5: f(+(x,y)) -> *(f(x),f(y)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: f#_A(x1) = ((1,0,0),(1,1,0),(0,0,0)) x1 +_A(x1,x2) = ((1,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(0,1,0),(0,1,0)) x2 + (1,1,1) s_A(x1) = (1,1,1) |0|_A() = (1,1,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.