YES

We show the termination of the TRS R:

  admit(x,nil()) -> nil()
  admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
  cond(true(),y) -> y

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: admit#(x,.(u,.(v,.(w(),z)))) -> cond#(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
p2: admit#(x,.(u,.(v,.(w(),z)))) -> admit#(carry(x,u,v),z)

and R consists of:

r1: admit(x,nil()) -> nil()
r2: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
r3: cond(true(),y) -> y

The estimated dependency graph contains the following SCCs:

  {p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: admit#(x,.(u,.(v,.(w(),z)))) -> admit#(carry(x,u,v),z)

and R consists of:

r1: admit(x,nil()) -> nil()
r2: admit(x,.(u,.(v,.(w(),z)))) -> cond(=(sum(x,u,v),w()),.(u,.(v,.(w(),admit(carry(x,u,v),z)))))
r3: cond(true(),y) -> y

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^3
    order: lexicographic order
    interpretations:
      admit#_A(x1,x2) = x1 + ((1,0,0),(0,1,0),(1,1,0)) x2
      ._A(x1,x2) = x1 + ((1,0,0),(1,1,0),(1,0,0)) x2 + (1,1,0)
      w_A() = (3,1,1)
      carry_A(x1,x2,x3) = ((1,0,0),(1,0,0),(1,1,0)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + ((1,0,0),(0,1,0),(1,1,1)) x3 + (3,13,1)

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.