YES We show the termination of the TRS R: norm(nil()) -> |0|() norm(g(x,y)) -> s(norm(x)) f(x,nil()) -> g(nil(),x) f(x,g(y,z)) -> g(f(x,y),z) rem(nil(),y) -> nil() rem(g(x,y),|0|()) -> g(x,y) rem(g(x,y),s(z)) -> rem(x,z) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: norm#(g(x,y)) -> norm#(x) p2: f#(x,g(y,z)) -> f#(x,y) p3: rem#(g(x,y),s(z)) -> rem#(x,z) and R consists of: r1: norm(nil()) -> |0|() r2: norm(g(x,y)) -> s(norm(x)) r3: f(x,nil()) -> g(nil(),x) r4: f(x,g(y,z)) -> g(f(x,y),z) r5: rem(nil(),y) -> nil() r6: rem(g(x,y),|0|()) -> g(x,y) r7: rem(g(x,y),s(z)) -> rem(x,z) The estimated dependency graph contains the following SCCs: {p1} {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: norm#(g(x,y)) -> norm#(x) and R consists of: r1: norm(nil()) -> |0|() r2: norm(g(x,y)) -> s(norm(x)) r3: f(x,nil()) -> g(nil(),x) r4: f(x,g(y,z)) -> g(f(x,y),z) r5: rem(nil(),y) -> nil() r6: rem(g(x,y),|0|()) -> g(x,y) r7: rem(g(x,y),s(z)) -> rem(x,z) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: norm#_A(x1) = ((1,0,0),(0,0,0),(1,1,0)) x1 g_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,g(y,z)) -> f#(x,y) and R consists of: r1: norm(nil()) -> |0|() r2: norm(g(x,y)) -> s(norm(x)) r3: f(x,nil()) -> g(nil(),x) r4: f(x,g(y,z)) -> g(f(x,y),z) r5: rem(nil(),y) -> nil() r6: rem(g(x,y),|0|()) -> g(x,y) r7: rem(g(x,y),s(z)) -> rem(x,z) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: f#_A(x1,x2) = ((1,0,0),(0,1,0),(0,1,1)) x1 + ((0,0,0),(1,0,0),(1,1,0)) x2 g_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rem#(g(x,y),s(z)) -> rem#(x,z) and R consists of: r1: norm(nil()) -> |0|() r2: norm(g(x,y)) -> s(norm(x)) r3: f(x,nil()) -> g(nil(),x) r4: f(x,g(y,z)) -> g(f(x,y),z) r5: rem(nil(),y) -> nil() r6: rem(g(x,y),|0|()) -> g(x,y) r7: rem(g(x,y),s(z)) -> rem(x,z) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: rem#_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(0,1,0),(1,1,1)) x2 g_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) s_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains.