YES We show the termination of the TRS R: prime(|0|()) -> false() prime(s(|0|())) -> false() prime(s(s(x))) -> prime1(s(s(x)),s(x)) prime1(x,|0|()) -> false() prime1(x,s(|0|())) -> true() prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) divp(x,y) -> =(rem(x,y),|0|()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: prime#(s(s(x))) -> prime1#(s(s(x)),s(x)) p2: prime1#(x,s(s(y))) -> divp#(s(s(y)),x) p3: prime1#(x,s(s(y))) -> prime1#(x,s(y)) and R consists of: r1: prime(|0|()) -> false() r2: prime(s(|0|())) -> false() r3: prime(s(s(x))) -> prime1(s(s(x)),s(x)) r4: prime1(x,|0|()) -> false() r5: prime1(x,s(|0|())) -> true() r6: prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) r7: divp(x,y) -> =(rem(x,y),|0|()) The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: prime1#(x,s(s(y))) -> prime1#(x,s(y)) and R consists of: r1: prime(|0|()) -> false() r2: prime(s(|0|())) -> false() r3: prime(s(s(x))) -> prime1(s(s(x)),s(x)) r4: prime1(x,|0|()) -> false() r5: prime1(x,s(|0|())) -> true() r6: prime1(x,s(s(y))) -> and(not(divp(s(s(y)),x)),prime1(x,s(y))) r7: divp(x,y) -> =(rem(x,y),|0|()) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: prime1#_A(x1,x2) = ((1,0,0),(0,0,0),(0,1,0)) x1 + ((1,0,0),(0,1,0),(0,1,1)) x2 s_A(x1) = ((1,0,0),(1,0,0),(1,1,0)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.