YES We show the termination of the TRS R: f(a,empty()) -> g(a,empty()) f(a,cons(x,k)) -> f(cons(x,a),k) g(empty(),d) -> d g(cons(x,k),d) -> g(k,cons(x,d)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a,empty()) -> g#(a,empty()) p2: f#(a,cons(x,k)) -> f#(cons(x,a),k) p3: g#(cons(x,k),d) -> g#(k,cons(x,d)) and R consists of: r1: f(a,empty()) -> g(a,empty()) r2: f(a,cons(x,k)) -> f(cons(x,a),k) r3: g(empty(),d) -> d r4: g(cons(x,k),d) -> g(k,cons(x,d)) The estimated dependency graph contains the following SCCs: {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a,cons(x,k)) -> f#(cons(x,a),k) and R consists of: r1: f(a,empty()) -> g(a,empty()) r2: f(a,cons(x,k)) -> f(cons(x,a),k) r3: g(empty(),d) -> d r4: g(cons(x,k),d) -> g(k,cons(x,d)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: f#_A(x1,x2) = ((0,0,0),(1,0,0),(0,0,0)) x2 cons_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(0,1,0),(1,1,1)) x2 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(cons(x,k),d) -> g#(k,cons(x,d)) and R consists of: r1: f(a,empty()) -> g(a,empty()) r2: f(a,cons(x,k)) -> f(cons(x,a),k) r3: g(empty(),d) -> d r4: g(cons(x,k),d) -> g(k,cons(x,d)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: g#_A(x1,x2) = x1 + ((0,0,0),(1,0,0),(0,1,0)) x2 cons_A(x1,x2) = ((0,0,0),(1,0,0),(1,1,0)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,2,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.