YES

We show the termination of the TRS R:

  f(empty(),l) -> l
  f(cons(x,k),l) -> g(k,l,cons(x,k))
  g(a,b,c) -> f(a,cons(b,c))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(cons(x,k),l) -> g#(k,l,cons(x,k))
p2: g#(a,b,c) -> f#(a,cons(b,c))

and R consists of:

r1: f(empty(),l) -> l
r2: f(cons(x,k),l) -> g(k,l,cons(x,k))
r3: g(a,b,c) -> f(a,cons(b,c))

The estimated dependency graph contains the following SCCs:

  {p1, p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(cons(x,k),l) -> g#(k,l,cons(x,k))
p2: g#(a,b,c) -> f#(a,cons(b,c))

and R consists of:

r1: f(empty(),l) -> l
r2: f(cons(x,k),l) -> g(k,l,cons(x,k))
r3: g(a,b,c) -> f(a,cons(b,c))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^3
    order: lexicographic order
    interpretations:
      f#_A(x1,x2) = ((1,0,0),(0,0,0),(1,0,0)) x1
      cons_A(x1,x2) = ((1,0,0),(0,1,0),(1,1,1)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + (2,1,1)
      g#_A(x1,x2,x3) = x1 + ((0,0,0),(1,0,0),(0,0,0)) x3 + (1,1,3)

The next rules are strictly ordered:

  p1, p2

We remove them from the problem.  Then no dependency pair remains.