YES We show the termination of the TRS R: rev(ls) -> r1(ls,empty()) r1(empty(),a) -> a r1(cons(x,k),a) -> r1(k,cons(x,a)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: rev#(ls) -> r1#(ls,empty()) p2: r1#(cons(x,k),a) -> r1#(k,cons(x,a)) and R consists of: r1: rev(ls) -> r1(ls,empty()) r2: r1(empty(),a) -> a r3: r1(cons(x,k),a) -> r1(k,cons(x,a)) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: r1#(cons(x,k),a) -> r1#(k,cons(x,a)) and R consists of: r1: rev(ls) -> r1(ls,empty()) r2: r1(empty(),a) -> a r3: r1(cons(x,k),a) -> r1(k,cons(x,a)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: r1#_A(x1,x2) = ((0,0,0),(1,0,0),(1,0,0)) x1 cons_A(x1,x2) = ((0,0,0),(1,0,0),(1,1,0)) x1 + ((1,0,0),(0,1,0),(1,1,1)) x2 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.