YES We show the termination of the TRS R: p(a(x0),p(a(b(x1)),x2)) -> p(a(b(a(x2))),p(a(a(x1)),x2)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: p#(a(x0),p(a(b(x1)),x2)) -> p#(a(b(a(x2))),p(a(a(x1)),x2)) p2: p#(a(x0),p(a(b(x1)),x2)) -> p#(a(a(x1)),x2) and R consists of: r1: p(a(x0),p(a(b(x1)),x2)) -> p(a(b(a(x2))),p(a(a(x1)),x2)) The estimated dependency graph contains the following SCCs: {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(a(x0),p(a(b(x1)),x2)) -> p#(a(a(x1)),x2) and R consists of: r1: p(a(x0),p(a(b(x1)),x2)) -> p(a(b(a(x2))),p(a(a(x1)),x2)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: p#_A(x1,x2) = ((1,0,0),(1,0,0),(0,0,0)) x1 + ((1,0,0),(0,1,0),(1,1,1)) x2 a_A(x1) = ((0,0,0),(0,0,0),(1,0,0)) x1 + (1,1,1) p_A(x1,x2) = x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (0,0,1) b_A(x1) = ((0,0,0),(1,0,0),(1,1,0)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.