YES We show the termination of the TRS R: D(t()) -> |1|() D(constant()) -> |0|() D(+(x,y)) -> +(D(x),D(y)) D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(-(x,y)) -> -(D(x),D(y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(+(x,y)) -> D#(y) p3: D#(*(x,y)) -> D#(x) p4: D#(*(x,y)) -> D#(y) p5: D#(-(x,y)) -> D#(x) p6: D#(-(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(-(x,y)) -> D#(y) p3: D#(-(x,y)) -> D#(x) p4: D#(*(x,y)) -> D#(y) p5: D#(*(x,y)) -> D#(x) p6: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: D#_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 +_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) -_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) *_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 r1, r2, r3, r4, r5 We remove them from the problem. Then no dependency pair remains.