YES We show the termination of the TRS R: app(app(map(),f),nil()) -> nil() app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) app(app(append(),xs),nil()) -> xs app(app(append(),nil()),ys) -> ys app(app(append(),app(app(cons(),x),xs)),ys) -> app(app(cons(),x),app(app(append(),xs),ys)) app(app(zip(),nil()),yss) -> yss app(app(zip(),xss),nil()) -> xss app(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app(app(cons(),app(app(append(),xs),ys)),app(app(zip(),xss),yss)) app(app(combine(),xs),nil()) -> xs app(app(combine(),xs),app(app(cons(),ys),yss)) -> app(app(combine(),app(app(zip(),xs),ys)),yss) app(levels(),app(app(node(),x),xs)) -> app(app(cons(),app(app(cons(),x),nil())),app(app(combine(),nil()),app(app(map(),levels()),xs))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs)) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x)) p3: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p4: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) p5: app#(app(append(),app(app(cons(),x),xs)),ys) -> app#(app(cons(),x),app(app(append(),xs),ys)) p6: app#(app(append(),app(app(cons(),x),xs)),ys) -> app#(app(append(),xs),ys) p7: app#(app(append(),app(app(cons(),x),xs)),ys) -> app#(append(),xs) p8: app#(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app#(app(cons(),app(app(append(),xs),ys)),app(app(zip(),xss),yss)) p9: app#(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app#(cons(),app(app(append(),xs),ys)) p10: app#(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app#(app(append(),xs),ys) p11: app#(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app#(append(),xs) p12: app#(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app#(app(zip(),xss),yss) p13: app#(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app#(zip(),xss) p14: app#(app(combine(),xs),app(app(cons(),ys),yss)) -> app#(app(combine(),app(app(zip(),xs),ys)),yss) p15: app#(app(combine(),xs),app(app(cons(),ys),yss)) -> app#(combine(),app(app(zip(),xs),ys)) p16: app#(app(combine(),xs),app(app(cons(),ys),yss)) -> app#(app(zip(),xs),ys) p17: app#(app(combine(),xs),app(app(cons(),ys),yss)) -> app#(zip(),xs) p18: app#(levels(),app(app(node(),x),xs)) -> app#(app(cons(),app(app(cons(),x),nil())),app(app(combine(),nil()),app(app(map(),levels()),xs))) p19: app#(levels(),app(app(node(),x),xs)) -> app#(cons(),app(app(cons(),x),nil())) p20: app#(levels(),app(app(node(),x),xs)) -> app#(app(cons(),x),nil()) p21: app#(levels(),app(app(node(),x),xs)) -> app#(cons(),x) p22: app#(levels(),app(app(node(),x),xs)) -> app#(app(combine(),nil()),app(app(map(),levels()),xs)) p23: app#(levels(),app(app(node(),x),xs)) -> app#(combine(),nil()) p24: app#(levels(),app(app(node(),x),xs)) -> app#(app(map(),levels()),xs) p25: app#(levels(),app(app(node(),x),xs)) -> app#(map(),levels()) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(app(append(),xs),nil()) -> xs r4: app(app(append(),nil()),ys) -> ys r5: app(app(append(),app(app(cons(),x),xs)),ys) -> app(app(cons(),x),app(app(append(),xs),ys)) r6: app(app(zip(),nil()),yss) -> yss r7: app(app(zip(),xss),nil()) -> xss r8: app(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app(app(cons(),app(app(append(),xs),ys)),app(app(zip(),xss),yss)) r9: app(app(combine(),xs),nil()) -> xs r10: app(app(combine(),xs),app(app(cons(),ys),yss)) -> app(app(combine(),app(app(zip(),xs),ys)),yss) r11: app(levels(),app(app(node(),x),xs)) -> app(app(cons(),app(app(cons(),x),nil())),app(app(combine(),nil()),app(app(map(),levels()),xs))) The estimated dependency graph contains the following SCCs: {p3, p4, p24} {p14} {p12} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(levels(),app(app(node(),x),xs)) -> app#(app(map(),levels()),xs) p3: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(app(append(),xs),nil()) -> xs r4: app(app(append(),nil()),ys) -> ys r5: app(app(append(),app(app(cons(),x),xs)),ys) -> app(app(cons(),x),app(app(append(),xs),ys)) r6: app(app(zip(),nil()),yss) -> yss r7: app(app(zip(),xss),nil()) -> xss r8: app(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app(app(cons(),app(app(append(),xs),ys)),app(app(zip(),xss),yss)) r9: app(app(combine(),xs),nil()) -> xs r10: app(app(combine(),xs),app(app(cons(),ys),yss)) -> app(app(combine(),app(app(zip(),xs),ys)),yss) r11: app(levels(),app(app(node(),x),xs)) -> app(app(cons(),app(app(cons(),x),nil())),app(app(combine(),nil()),app(app(map(),levels()),xs))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0,0),(1,1,0),(1,0,0)) x1 + ((1,0,0),(1,1,0),(0,0,0)) x2 app_A(x1,x2) = x1 + ((1,0,0),(1,1,0),(0,0,0)) x2 + (0,0,1) map_A() = (1,2,1) cons_A() = (1,1,0) levels_A() = (1,1,1) node_A() = (2,1,0) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(combine(),xs),app(app(cons(),ys),yss)) -> app#(app(combine(),app(app(zip(),xs),ys)),yss) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(app(append(),xs),nil()) -> xs r4: app(app(append(),nil()),ys) -> ys r5: app(app(append(),app(app(cons(),x),xs)),ys) -> app(app(cons(),x),app(app(append(),xs),ys)) r6: app(app(zip(),nil()),yss) -> yss r7: app(app(zip(),xss),nil()) -> xss r8: app(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app(app(cons(),app(app(append(),xs),ys)),app(app(zip(),xss),yss)) r9: app(app(combine(),xs),nil()) -> xs r10: app(app(combine(),xs),app(app(cons(),ys),yss)) -> app(app(combine(),app(app(zip(),xs),ys)),yss) r11: app(levels(),app(app(node(),x),xs)) -> app(app(cons(),app(app(cons(),x),nil())),app(app(combine(),nil()),app(app(map(),levels()),xs))) The set of usable rules consists of r3, r4, r5, r6, r7, r8 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,1)) x1 + x2 app_A(x1,x2) = ((1,0,0),(0,0,0),(1,0,0)) x1 + ((1,0,0),(0,0,0),(1,0,0)) x2 + (1,1,0) combine_A() = (0,1,1) cons_A() = (2,1,0) zip_A() = (1,1,0) append_A() = (1,1,0) nil_A() = (1,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app#(app(zip(),xss),yss) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(app(append(),xs),nil()) -> xs r4: app(app(append(),nil()),ys) -> ys r5: app(app(append(),app(app(cons(),x),xs)),ys) -> app(app(cons(),x),app(app(append(),xs),ys)) r6: app(app(zip(),nil()),yss) -> yss r7: app(app(zip(),xss),nil()) -> xss r8: app(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app(app(cons(),app(app(append(),xs),ys)),app(app(zip(),xss),yss)) r9: app(app(combine(),xs),nil()) -> xs r10: app(app(combine(),xs),app(app(cons(),ys),yss)) -> app(app(combine(),app(app(zip(),xs),ys)),yss) r11: app(levels(),app(app(node(),x),xs)) -> app(app(cons(),app(app(cons(),x),nil())),app(app(combine(),nil()),app(app(map(),levels()),xs))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: app#_A(x1,x2) = x1 + ((1,0,0),(0,1,0),(0,1,1)) x2 app_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x2 + (1,1,1) zip_A() = (1,1,1) cons_A() = (1,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(append(),app(app(cons(),x),xs)),ys) -> app#(app(append(),xs),ys) and R consists of: r1: app(app(map(),f),nil()) -> nil() r2: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r3: app(app(append(),xs),nil()) -> xs r4: app(app(append(),nil()),ys) -> ys r5: app(app(append(),app(app(cons(),x),xs)),ys) -> app(app(cons(),x),app(app(append(),xs),ys)) r6: app(app(zip(),nil()),yss) -> yss r7: app(app(zip(),xss),nil()) -> xss r8: app(app(zip(),app(app(cons(),xs),xss)),app(app(cons(),ys),yss)) -> app(app(cons(),app(app(append(),xs),ys)),app(app(zip(),xss),yss)) r9: app(app(combine(),xs),nil()) -> xs r10: app(app(combine(),xs),app(app(cons(),ys),yss)) -> app(app(combine(),app(app(zip(),xs),ys)),yss) r11: app(levels(),app(app(node(),x),xs)) -> app(app(cons(),app(app(cons(),x),nil())),app(app(combine(),nil()),app(app(map(),levels()),xs))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0,0),(0,1,0),(1,0,0)) x1 + ((1,0,0),(0,1,0),(0,1,1)) x2 app_A(x1,x2) = ((1,0,0),(0,1,0),(0,1,1)) x2 + (1,1,1) append_A() = (1,1,1) cons_A() = (1,1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.