YES We show the termination of the TRS R: app(app(plus(),|0|()),y) -> y app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) app(app(sumwith(),f),nil()) -> nil() app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y)) p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x) p4: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) p5: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(plus(),app(f,x)) p6: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(f,x) p7: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(sumwith(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The estimated dependency graph contains the following SCCs: {p6, p7} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(sumwith(),f),app(app(cons(),x),xs)) -> app#(app(sumwith(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0,0),(1,1,0),(0,1,0)) x1 + ((1,0,0),(1,1,0),(0,0,1)) x2 app_A(x1,x2) = x1 + ((1,0,0),(1,1,0),(1,1,1)) x2 + (0,0,1) sumwith_A() = (1,1,1) cons_A() = (1,1,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(sumwith(),f),nil()) -> nil() r4: app(app(sumwith(),f),app(app(cons(),x),xs)) -> app(app(plus(),app(f,x)),app(app(sumwith(),f),xs)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: app#_A(x1,x2) = ((1,0,0),(0,0,0),(0,1,0)) x1 + ((1,0,0),(0,0,0),(0,1,0)) x2 app_A(x1,x2) = ((1,0,0),(1,1,0),(1,0,1)) x2 + (1,1,0) plus_A() = (1,1,1) s_A() = (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.