YES We show the termination of the TRS R: active(f(x)) -> mark(x) top(active(c())) -> top(mark(c())) top(mark(x)) -> top(check(x)) check(f(x)) -> f(check(x)) check(x) -> start(match(f(X()),x)) match(f(x),f(y)) -> f(match(x,y)) match(X(),x) -> proper(x) proper(c()) -> ok(c()) proper(f(x)) -> f(proper(x)) f(ok(x)) -> ok(f(x)) start(ok(x)) -> found(x) f(found(x)) -> found(f(x)) top(found(x)) -> top(active(x)) active(f(x)) -> f(active(x)) f(mark(x)) -> mark(f(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(active(c())) -> top#(mark(c())) p2: top#(mark(x)) -> top#(check(x)) p3: top#(mark(x)) -> check#(x) p4: check#(f(x)) -> f#(check(x)) p5: check#(f(x)) -> check#(x) p6: check#(x) -> start#(match(f(X()),x)) p7: check#(x) -> match#(f(X()),x) p8: check#(x) -> f#(X()) p9: match#(f(x),f(y)) -> f#(match(x,y)) p10: match#(f(x),f(y)) -> match#(x,y) p11: match#(X(),x) -> proper#(x) p12: proper#(f(x)) -> f#(proper(x)) p13: proper#(f(x)) -> proper#(x) p14: f#(ok(x)) -> f#(x) p15: f#(found(x)) -> f#(x) p16: top#(found(x)) -> top#(active(x)) p17: top#(found(x)) -> active#(x) p18: active#(f(x)) -> f#(active(x)) p19: active#(f(x)) -> active#(x) p20: f#(mark(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The estimated dependency graph contains the following SCCs: {p1, p2, p16} {p5} {p19} {p10} {p13} {p14, p15, p20} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(active(c())) -> top#(mark(c())) p2: top#(mark(x)) -> top#(check(x)) p3: top#(found(x)) -> top#(active(x)) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The set of usable rules consists of r1, r4, r5, r6, r7, r8, r9, r10, r11, r12, r14, r15 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: top#_A(x1) = x1 active_A(x1) = ((1,0,0),(0,0,0),(1,0,0)) x1 + (0,11,1) c_A() = (2,1,1) mark_A(x1) = (1,11,2) check_A(x1) = (1,11,2) found_A(x1) = ((1,0,0),(0,0,0),(1,0,0)) x1 + (0,11,1) proper_A(x1) = ((0,0,0),(1,0,0),(0,0,0)) x1 + (3,7,0) ok_A(x1) = x1 + (0,10,0) f_A(x1) = (1,11,2) match_A(x1,x2) = ((1,0,0),(1,1,0),(1,0,0)) x1 + (0,1,2) X_A() = (4,1,1) start_A(x1) = ((1,0,0),(0,0,0),(1,0,0)) x1 + (0,11,1) The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(x)) -> top#(check(x)) p2: top#(found(x)) -> top#(active(x)) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(x)) -> top#(check(x)) p2: top#(found(x)) -> top#(active(x)) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The set of usable rules consists of r1, r4, r5, r6, r7, r8, r9, r10, r11, r12, r14, r15 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: top#_A(x1) = ((0,0,0),(1,0,0),(0,1,0)) x1 mark_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (11,10,1) check_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (8,9,1) found_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (4,3,4) active_A(x1) = ((1,0,0),(1,0,0),(1,1,0)) x1 + (1,2,1) proper_A(x1) = x1 + (3,6,3) c_A() = (1,1,1) ok_A(x1) = x1 + (2,1,1) f_A(x1) = ((1,0,0),(1,0,0),(0,0,0)) x1 + (11,11,2) match_A(x1,x2) = ((1,0,0),(1,0,0),(0,1,0)) x2 + (4,5,1) X_A() = (1,1,1) start_A(x1) = ((1,0,0),(1,0,0),(1,1,0)) x1 + (3,0,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: check#(f(x)) -> check#(x) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: check#_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 f_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(x)) -> active#(x) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: active#_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 f_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: match#(f(x),f(y)) -> match#(x,y) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: match#_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 f_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(f(x)) -> proper#(x) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: proper#_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 f_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(ok(x)) -> f#(x) p2: f#(mark(x)) -> f#(x) p3: f#(found(x)) -> f#(x) and R consists of: r1: active(f(x)) -> mark(x) r2: top(active(c())) -> top(mark(c())) r3: top(mark(x)) -> top(check(x)) r4: check(f(x)) -> f(check(x)) r5: check(x) -> start(match(f(X()),x)) r6: match(f(x),f(y)) -> f(match(x,y)) r7: match(X(),x) -> proper(x) r8: proper(c()) -> ok(c()) r9: proper(f(x)) -> f(proper(x)) r10: f(ok(x)) -> ok(f(x)) r11: start(ok(x)) -> found(x) r12: f(found(x)) -> found(f(x)) r13: top(found(x)) -> top(active(x)) r14: active(f(x)) -> f(active(x)) r15: f(mark(x)) -> mark(f(x)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: f#_A(x1) = ((1,0,0),(1,1,0),(1,0,1)) x1 ok_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) mark_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) found_A(x1) = ((1,0,0),(1,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1, p2, p3 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 We remove them from the problem. Then no dependency pair remains.