YES We show the termination of the TRS R: minus_active(|0|(),y) -> |0|() mark(|0|()) -> |0|() minus_active(s(x),s(y)) -> minus_active(x,y) mark(s(x)) -> s(mark(x)) ge_active(x,|0|()) -> true() mark(minus(x,y)) -> minus_active(x,y) ge_active(|0|(),s(y)) -> false() mark(ge(x,y)) -> ge_active(x,y) ge_active(s(x),s(y)) -> ge_active(x,y) mark(div(x,y)) -> div_active(mark(x),y) div_active(|0|(),s(y)) -> |0|() mark(if(x,y,z)) -> if_active(mark(x),y,z) div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) if_active(true(),x,y) -> mark(x) minus_active(x,y) -> minus(x,y) if_active(false(),x,y) -> mark(y) ge_active(x,y) -> ge(x,y) if_active(x,y,z) -> if(x,y,z) div_active(x,y) -> div(x,y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus_active#(s(x),s(y)) -> minus_active#(x,y) p2: mark#(s(x)) -> mark#(x) p3: mark#(minus(x,y)) -> minus_active#(x,y) p4: mark#(ge(x,y)) -> ge_active#(x,y) p5: ge_active#(s(x),s(y)) -> ge_active#(x,y) p6: mark#(div(x,y)) -> div_active#(mark(x),y) p7: mark#(div(x,y)) -> mark#(x) p8: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p9: mark#(if(x,y,z)) -> mark#(x) p10: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p11: div_active#(s(x),s(y)) -> ge_active#(x,y) p12: if_active#(true(),x,y) -> mark#(x) p13: if_active#(false(),x,y) -> mark#(y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p2, p6, p7, p8, p9, p10, p12, p13} {p1} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> mark#(x) p3: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p4: if_active#(true(),x,y) -> mark#(x) p5: mark#(div(x,y)) -> mark#(x) p6: mark#(div(x,y)) -> div_active#(mark(x),y) p7: div_active#(s(x),s(y)) -> if_active#(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) p8: mark#(s(x)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: if_active#_A(x1,x2,x3) = x2 + ((1,0,0),(1,1,0),(0,0,0)) x3 + (0,3,5) false_A() = (0,4,1) mark#_A(x1) = x1 + (0,3,5) if_A(x1,x2,x3) = ((1,0,0),(1,1,0),(0,0,0)) x1 + ((1,0,0),(0,1,0),(0,1,0)) x2 + ((1,0,0),(1,1,0),(0,0,0)) x3 mark_A(x1) = ((1,0,0),(1,1,0),(0,1,0)) x1 + (0,2,4) true_A() = (0,4,1) div_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,0)) x1 + ((0,0,0),(1,0,0),(0,0,0)) x2 + (2,0,2) div_active#_A(x1,x2) = ((1,0,0),(0,1,0),(1,0,1)) x1 + ((0,0,0),(1,0,0),(0,0,0)) x2 + (2,0,0) s_A(x1) = x1 + (8,1,1) ge_active_A(x1,x2) = (0,5,9) minus_A(x1,x2) = x1 + (0,1,1) |0|_A() = (0,1,1) minus_active_A(x1,x2) = x1 + (0,2,6) div_active_A(x1,x2) = ((1,0,0),(1,1,0),(0,0,1)) x1 + ((0,0,0),(1,0,0),(0,0,0)) x2 + (2,1,1) if_active_A(x1,x2,x3) = ((1,0,0),(1,1,0),(0,1,0)) x1 + ((1,0,0),(1,1,0),(0,1,0)) x2 + ((1,0,0),(1,1,0),(0,1,0)) x3 + (0,0,1) ge_A(x1,x2) = (0,4,1) The next rules are strictly ordered: p5, p6, p7, p8 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> mark#(x) p3: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p4: if_active#(true(),x,y) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_active#(false(),x,y) -> mark#(y) p2: mark#(if(x,y,z)) -> if_active#(mark(x),y,z) p3: if_active#(true(),x,y) -> mark#(x) p4: mark#(if(x,y,z)) -> mark#(x) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: if_active#_A(x1,x2,x3) = ((1,0,0),(0,1,0),(1,1,1)) x1 + x2 + x3 false_A() = (8,1,7) mark#_A(x1) = x1 + (7,3,15) if_A(x1,x2,x3) = ((1,0,0),(0,0,0),(1,1,0)) x1 + x2 + ((1,0,0),(0,0,0),(1,1,0)) x3 + (1,4,0) mark_A(x1) = ((1,0,0),(0,0,0),(0,1,0)) x1 + (2,6,6) true_A() = (8,4,4) minus_active_A(x1,x2) = (2,8,0) |0|_A() = (0,7,14) s_A(x1) = ((0,0,0),(1,0,0),(0,1,0)) x1 + (0,2,1) ge_active_A(x1,x2) = (9,5,5) div_active_A(x1,x2) = (11,8,15) if_active_A(x1,x2,x3) = ((1,0,0),(0,0,0),(0,1,0)) x1 + x2 + x3 + (1,5,1) div_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 + ((0,0,0),(0,0,0),(1,0,0)) x2 + (10,1,0) minus_A(x1,x2) = (1,9,0) ge_A(x1,x2) = (9,0,0) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus_active#(s(x),s(y)) -> minus_active#(x,y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: minus_active#_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 s_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ge_active#(s(x),s(y)) -> ge_active#(x,y) and R consists of: r1: minus_active(|0|(),y) -> |0|() r2: mark(|0|()) -> |0|() r3: minus_active(s(x),s(y)) -> minus_active(x,y) r4: mark(s(x)) -> s(mark(x)) r5: ge_active(x,|0|()) -> true() r6: mark(minus(x,y)) -> minus_active(x,y) r7: ge_active(|0|(),s(y)) -> false() r8: mark(ge(x,y)) -> ge_active(x,y) r9: ge_active(s(x),s(y)) -> ge_active(x,y) r10: mark(div(x,y)) -> div_active(mark(x),y) r11: div_active(|0|(),s(y)) -> |0|() r12: mark(if(x,y,z)) -> if_active(mark(x),y,z) r13: div_active(s(x),s(y)) -> if_active(ge_active(x,y),s(div(minus(x,y),s(y))),|0|()) r14: if_active(true(),x,y) -> mark(x) r15: minus_active(x,y) -> minus(x,y) r16: if_active(false(),x,y) -> mark(y) r17: ge_active(x,y) -> ge(x,y) r18: if_active(x,y,z) -> if(x,y,z) r19: div_active(x,y) -> div(x,y) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: ge_active#_A(x1,x2) = ((0,0,0),(0,0,0),(1,0,0)) x1 s_A(x1) = ((1,0,0),(0,1,0),(1,1,1)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.