YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) minus(minus(x,y),z) -> minus(x,plus(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: plus#(s(x),y) -> plus#(x,y) p5: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) p6: minus#(minus(x,y),z) -> plus#(y,z) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) The estimated dependency graph contains the following SCCs: {p2} {p1, p5} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) The set of usable rules consists of r1, r2, r5, r6, r7 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = ((1,0,0),(0,1,0),(0,1,0)) x1 + (0,2,2) minus_A(x1,x2) = ((1,0,0),(0,1,0),(0,1,0)) x1 + (0,1,1) plus_A(x1,x2) = x1 + ((1,0,0),(1,0,0),(1,0,0)) x2 + (1,1,2) |0|_A() = (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: minus#(minus(x,y),z) -> minus#(x,plus(y,z)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) The set of usable rules consists of r5, r6 Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: minus#_A(x1,x2) = ((1,0,0),(1,1,0),(0,1,0)) x1 + ((1,0,0),(0,0,0),(0,1,0)) x2 s_A(x1) = x1 + (1,1,1) minus_A(x1,x2) = ((1,0,0),(1,1,0),(1,1,1)) x1 + ((1,0,0),(0,1,0),(1,1,1)) x2 + (2,1,1) plus_A(x1,x2) = x1 + ((1,0,0),(1,1,0),(0,0,1)) x2 + (1,2,2) |0|_A() = (1,1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: plus(|0|(),y) -> y r6: plus(s(x),y) -> s(plus(x,y)) r7: minus(minus(x,y),z) -> minus(x,plus(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^3 order: lexicographic order interpretations: plus#_A(x1,x2) = x1 + ((0,0,0),(1,0,0),(0,1,0)) x2 s_A(x1) = ((1,0,0),(0,0,0),(1,1,0)) x1 + (1,1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.