YES We show the termination of the TRS R: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) p3: f#(a(),f(b(),x)) -> f#(a(),x) p4: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p5: f#(b(),f(a(),x)) -> f#(b(),f(b(),x)) p6: f#(b(),f(a(),x)) -> f#(b(),x) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The estimated dependency graph contains the following SCCs: {p1, p2, p3} {p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x))) p2: f#(a(),f(b(),x)) -> f#(a(),x) p3: f#(a(),f(b(),x)) -> f#(a(),f(a(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r1 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = x2 a_A() = (1,1) f_A(x1,x2) = ((0,0),(1,0)) x1 + x2 b_A() = (3,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x))) p2: f#(b(),f(a(),x)) -> f#(b(),x) p3: f#(b(),f(a(),x)) -> f#(b(),f(b(),x)) and R consists of: r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x))) r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x))) The set of usable rules consists of r2 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = x2 b_A() = (1,1) f_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (0,1) a_A() = (3,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.