YES We show the termination of the TRS R: f(f(a(),x),a()) -> f(f(f(a(),f(a(),a())),x),a()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(a(),x),a()) -> f#(f(f(a(),f(a(),a())),x),a()) p2: f#(f(a(),x),a()) -> f#(f(a(),f(a(),a())),x) p3: f#(f(a(),x),a()) -> f#(a(),f(a(),a())) p4: f#(f(a(),x),a()) -> f#(a(),a()) and R consists of: r1: f(f(a(),x),a()) -> f(f(f(a(),f(a(),a())),x),a()) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(a(),x),a()) -> f#(f(f(a(),f(a(),a())),x),a()) p2: f#(f(a(),x),a()) -> f#(f(a(),f(a(),a())),x) and R consists of: r1: f(f(a(),x),a()) -> f(f(f(a(),f(a(),a())),x),a()) The set of usable rules consists of r1 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2) = x1 + ((0,0),(1,0)) x2 f_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + (1,0) a_A() = (2,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.