YES We show the termination of the TRS R: g(|0|(),f(x,x)) -> x g(x,s(y)) -> g(f(x,y),|0|()) g(s(x),y) -> g(f(x,y),|0|()) g(f(x,y),|0|()) -> f(g(x,|0|()),g(y,|0|())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: g#(x,s(y)) -> g#(f(x,y),|0|()) p2: g#(s(x),y) -> g#(f(x,y),|0|()) p3: g#(f(x,y),|0|()) -> g#(x,|0|()) p4: g#(f(x,y),|0|()) -> g#(y,|0|()) and R consists of: r1: g(|0|(),f(x,x)) -> x r2: g(x,s(y)) -> g(f(x,y),|0|()) r3: g(s(x),y) -> g(f(x,y),|0|()) r4: g(f(x,y),|0|()) -> f(g(x,|0|()),g(y,|0|())) The estimated dependency graph contains the following SCCs: {p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(f(x,y),|0|()) -> g#(x,|0|()) p2: g#(f(x,y),|0|()) -> g#(y,|0|()) p3: g#(s(x),y) -> g#(f(x,y),|0|()) and R consists of: r1: g(|0|(),f(x,x)) -> x r2: g(x,s(y)) -> g(f(x,y),|0|()) r3: g(s(x),y) -> g(f(x,y),|0|()) r4: g(f(x,y),|0|()) -> f(g(x,|0|()),g(y,|0|())) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: g#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 f_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) |0|_A() = (1,1) s_A(x1) = ((1,0),(1,1)) x1 + (3,1) The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.