YES We show the termination of the TRS R: +(p1(),p1()) -> p2() +(p1(),+(p2(),p2())) -> p5() +(p5(),p5()) -> p10() +(+(x,y),z) -> +(x,+(y,z)) +(p1(),+(p1(),x)) -> +(p2(),x) +(p1(),+(p2(),+(p2(),x))) -> +(p5(),x) +(p2(),p1()) -> +(p1(),p2()) +(p2(),+(p1(),x)) -> +(p1(),+(p2(),x)) +(p2(),+(p2(),p2())) -> +(p1(),p5()) +(p2(),+(p2(),+(p2(),x))) -> +(p1(),+(p5(),x)) +(p5(),p1()) -> +(p1(),p5()) +(p5(),+(p1(),x)) -> +(p1(),+(p5(),x)) +(p5(),p2()) -> +(p2(),p5()) +(p5(),+(p2(),x)) -> +(p2(),+(p5(),x)) +(p5(),+(p5(),x)) -> +(p10(),x) +(p10(),p1()) -> +(p1(),p10()) +(p10(),+(p1(),x)) -> +(p1(),+(p10(),x)) +(p10(),p2()) -> +(p2(),p10()) +(p10(),+(p2(),x)) -> +(p2(),+(p10(),x)) +(p10(),p5()) -> +(p5(),p10()) +(p10(),+(p5(),x)) -> +(p5(),+(p10(),x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) p2: +#(+(x,y),z) -> +#(y,z) p3: +#(p1(),+(p1(),x)) -> +#(p2(),x) p4: +#(p1(),+(p2(),+(p2(),x))) -> +#(p5(),x) p5: +#(p2(),p1()) -> +#(p1(),p2()) p6: +#(p2(),+(p1(),x)) -> +#(p1(),+(p2(),x)) p7: +#(p2(),+(p1(),x)) -> +#(p2(),x) p8: +#(p2(),+(p2(),p2())) -> +#(p1(),p5()) p9: +#(p2(),+(p2(),+(p2(),x))) -> +#(p1(),+(p5(),x)) p10: +#(p2(),+(p2(),+(p2(),x))) -> +#(p5(),x) p11: +#(p5(),p1()) -> +#(p1(),p5()) p12: +#(p5(),+(p1(),x)) -> +#(p1(),+(p5(),x)) p13: +#(p5(),+(p1(),x)) -> +#(p5(),x) p14: +#(p5(),p2()) -> +#(p2(),p5()) p15: +#(p5(),+(p2(),x)) -> +#(p2(),+(p5(),x)) p16: +#(p5(),+(p2(),x)) -> +#(p5(),x) p17: +#(p5(),+(p5(),x)) -> +#(p10(),x) p18: +#(p10(),p1()) -> +#(p1(),p10()) p19: +#(p10(),+(p1(),x)) -> +#(p1(),+(p10(),x)) p20: +#(p10(),+(p1(),x)) -> +#(p10(),x) p21: +#(p10(),p2()) -> +#(p2(),p10()) p22: +#(p10(),+(p2(),x)) -> +#(p2(),+(p10(),x)) p23: +#(p10(),+(p2(),x)) -> +#(p10(),x) p24: +#(p10(),p5()) -> +#(p5(),p10()) p25: +#(p10(),+(p5(),x)) -> +#(p5(),+(p10(),x)) p26: +#(p10(),+(p5(),x)) -> +#(p10(),x) and R consists of: r1: +(p1(),p1()) -> p2() r2: +(p1(),+(p2(),p2())) -> p5() r3: +(p5(),p5()) -> p10() r4: +(+(x,y),z) -> +(x,+(y,z)) r5: +(p1(),+(p1(),x)) -> +(p2(),x) r6: +(p1(),+(p2(),+(p2(),x))) -> +(p5(),x) r7: +(p2(),p1()) -> +(p1(),p2()) r8: +(p2(),+(p1(),x)) -> +(p1(),+(p2(),x)) r9: +(p2(),+(p2(),p2())) -> +(p1(),p5()) r10: +(p2(),+(p2(),+(p2(),x))) -> +(p1(),+(p5(),x)) r11: +(p5(),p1()) -> +(p1(),p5()) r12: +(p5(),+(p1(),x)) -> +(p1(),+(p5(),x)) r13: +(p5(),p2()) -> +(p2(),p5()) r14: +(p5(),+(p2(),x)) -> +(p2(),+(p5(),x)) r15: +(p5(),+(p5(),x)) -> +(p10(),x) r16: +(p10(),p1()) -> +(p1(),p10()) r17: +(p10(),+(p1(),x)) -> +(p1(),+(p10(),x)) r18: +(p10(),p2()) -> +(p2(),p10()) r19: +(p10(),+(p2(),x)) -> +(p2(),+(p10(),x)) r20: +(p10(),p5()) -> +(p5(),p10()) r21: +(p10(),+(p5(),x)) -> +(p5(),+(p10(),x)) The estimated dependency graph contains the following SCCs: {p1, p2} {p3, p4, p6, p7, p9, p10, p12, p13, p15, p16, p17, p19, p20, p22, p23, p25, p26} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) p2: +#(+(x,y),z) -> +#(y,z) and R consists of: r1: +(p1(),p1()) -> p2() r2: +(p1(),+(p2(),p2())) -> p5() r3: +(p5(),p5()) -> p10() r4: +(+(x,y),z) -> +(x,+(y,z)) r5: +(p1(),+(p1(),x)) -> +(p2(),x) r6: +(p1(),+(p2(),+(p2(),x))) -> +(p5(),x) r7: +(p2(),p1()) -> +(p1(),p2()) r8: +(p2(),+(p1(),x)) -> +(p1(),+(p2(),x)) r9: +(p2(),+(p2(),p2())) -> +(p1(),p5()) r10: +(p2(),+(p2(),+(p2(),x))) -> +(p1(),+(p5(),x)) r11: +(p5(),p1()) -> +(p1(),p5()) r12: +(p5(),+(p1(),x)) -> +(p1(),+(p5(),x)) r13: +(p5(),p2()) -> +(p2(),p5()) r14: +(p5(),+(p2(),x)) -> +(p2(),+(p5(),x)) r15: +(p5(),+(p5(),x)) -> +(p10(),x) r16: +(p10(),p1()) -> +(p1(),p10()) r17: +(p10(),+(p1(),x)) -> +(p1(),+(p10(),x)) r18: +(p10(),p2()) -> +(p2(),p10()) r19: +(p10(),+(p2(),x)) -> +(p2(),+(p10(),x)) r20: +(p10(),p5()) -> +(p5(),p10()) r21: +(p10(),+(p5(),x)) -> +(p5(),+(p10(),x)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = x1 +_A(x1,x2) = x1 + x2 + (1,0) p1_A() = (1,1) p2_A() = (1,1) p5_A() = (1,1) p10_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(p1(),+(p1(),x)) -> +#(p2(),x) p2: +#(p2(),+(p2(),+(p2(),x))) -> +#(p5(),x) p3: +#(p5(),+(p5(),x)) -> +#(p10(),x) p4: +#(p10(),+(p5(),x)) -> +#(p10(),x) p5: +#(p10(),+(p5(),x)) -> +#(p5(),+(p10(),x)) p6: +#(p5(),+(p2(),x)) -> +#(p5(),x) p7: +#(p5(),+(p2(),x)) -> +#(p2(),+(p5(),x)) p8: +#(p2(),+(p2(),+(p2(),x))) -> +#(p1(),+(p5(),x)) p9: +#(p1(),+(p2(),+(p2(),x))) -> +#(p5(),x) p10: +#(p5(),+(p1(),x)) -> +#(p5(),x) p11: +#(p5(),+(p1(),x)) -> +#(p1(),+(p5(),x)) p12: +#(p2(),+(p1(),x)) -> +#(p2(),x) p13: +#(p2(),+(p1(),x)) -> +#(p1(),+(p2(),x)) p14: +#(p10(),+(p2(),x)) -> +#(p10(),x) p15: +#(p10(),+(p2(),x)) -> +#(p2(),+(p10(),x)) p16: +#(p10(),+(p1(),x)) -> +#(p10(),x) p17: +#(p10(),+(p1(),x)) -> +#(p1(),+(p10(),x)) and R consists of: r1: +(p1(),p1()) -> p2() r2: +(p1(),+(p2(),p2())) -> p5() r3: +(p5(),p5()) -> p10() r4: +(+(x,y),z) -> +(x,+(y,z)) r5: +(p1(),+(p1(),x)) -> +(p2(),x) r6: +(p1(),+(p2(),+(p2(),x))) -> +(p5(),x) r7: +(p2(),p1()) -> +(p1(),p2()) r8: +(p2(),+(p1(),x)) -> +(p1(),+(p2(),x)) r9: +(p2(),+(p2(),p2())) -> +(p1(),p5()) r10: +(p2(),+(p2(),+(p2(),x))) -> +(p1(),+(p5(),x)) r11: +(p5(),p1()) -> +(p1(),p5()) r12: +(p5(),+(p1(),x)) -> +(p1(),+(p5(),x)) r13: +(p5(),p2()) -> +(p2(),p5()) r14: +(p5(),+(p2(),x)) -> +(p2(),+(p5(),x)) r15: +(p5(),+(p5(),x)) -> +(p10(),x) r16: +(p10(),p1()) -> +(p1(),p10()) r17: +(p10(),+(p1(),x)) -> +(p1(),+(p10(),x)) r18: +(p10(),p2()) -> +(p2(),p10()) r19: +(p10(),+(p2(),x)) -> +(p2(),+(p10(),x)) r20: +(p10(),p5()) -> +(p5(),p10()) r21: +(p10(),+(p5(),x)) -> +(p5(),+(p10(),x)) The set of usable rules consists of r1, r2, r3, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = ((0,0),(1,0)) x2 p1_A() = (4,1) +_A(x1,x2) = ((1,0),(1,0)) x2 + (1,1) p2_A() = (3,6) p5_A() = (2,6) p10_A() = (1,4) The next rules are strictly ordered: p1, p2, p3, p4, p6, p8, p9, p10, p12, p14, p16 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(p10(),+(p5(),x)) -> +#(p5(),+(p10(),x)) p2: +#(p5(),+(p2(),x)) -> +#(p2(),+(p5(),x)) p3: +#(p5(),+(p1(),x)) -> +#(p1(),+(p5(),x)) p4: +#(p2(),+(p1(),x)) -> +#(p1(),+(p2(),x)) p5: +#(p10(),+(p2(),x)) -> +#(p2(),+(p10(),x)) p6: +#(p10(),+(p1(),x)) -> +#(p1(),+(p10(),x)) and R consists of: r1: +(p1(),p1()) -> p2() r2: +(p1(),+(p2(),p2())) -> p5() r3: +(p5(),p5()) -> p10() r4: +(+(x,y),z) -> +(x,+(y,z)) r5: +(p1(),+(p1(),x)) -> +(p2(),x) r6: +(p1(),+(p2(),+(p2(),x))) -> +(p5(),x) r7: +(p2(),p1()) -> +(p1(),p2()) r8: +(p2(),+(p1(),x)) -> +(p1(),+(p2(),x)) r9: +(p2(),+(p2(),p2())) -> +(p1(),p5()) r10: +(p2(),+(p2(),+(p2(),x))) -> +(p1(),+(p5(),x)) r11: +(p5(),p1()) -> +(p1(),p5()) r12: +(p5(),+(p1(),x)) -> +(p1(),+(p5(),x)) r13: +(p5(),p2()) -> +(p2(),p5()) r14: +(p5(),+(p2(),x)) -> +(p2(),+(p5(),x)) r15: +(p5(),+(p5(),x)) -> +(p10(),x) r16: +(p10(),p1()) -> +(p1(),p10()) r17: +(p10(),+(p1(),x)) -> +(p1(),+(p10(),x)) r18: +(p10(),p2()) -> +(p2(),p10()) r19: +(p10(),+(p2(),x)) -> +(p2(),+(p10(),x)) r20: +(p10(),p5()) -> +(p5(),p10()) r21: +(p10(),+(p5(),x)) -> +(p5(),+(p10(),x)) The estimated dependency graph contains the following SCCs: (no SCCs)