YES We show the termination of the TRS R: +(|0|(),y) -> y +(s(x),y) -> s(+(x,y)) ++(nil(),ys) -> ys ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) sum(|:|(x,nil())) -> |:|(x,nil()) sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) -(x,|0|()) -> x -(|0|(),s(y)) -> |0|() -(s(x),s(y)) -> -(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) length(nil()) -> |0|() length(|:|(x,xs)) -> s(length(xs)) hd(|:|(x,xs)) -> x avg(xs) -> quot(hd(sum(xs)),length(xs)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> +#(x,y) p2: ++#(|:|(x,xs),ys) -> ++#(xs,ys) p3: sum#(|:|(x,|:|(y,xs))) -> sum#(|:|(+(x,y),xs)) p4: sum#(|:|(x,|:|(y,xs))) -> +#(x,y) p5: sum#(++(xs,|:|(x,|:|(y,ys)))) -> sum#(++(xs,sum(|:|(x,|:|(y,ys))))) p6: sum#(++(xs,|:|(x,|:|(y,ys)))) -> ++#(xs,sum(|:|(x,|:|(y,ys)))) p7: sum#(++(xs,|:|(x,|:|(y,ys)))) -> sum#(|:|(x,|:|(y,ys))) p8: -#(s(x),s(y)) -> -#(x,y) p9: quot#(s(x),s(y)) -> quot#(-(x,y),s(y)) p10: quot#(s(x),s(y)) -> -#(x,y) p11: length#(|:|(x,xs)) -> length#(xs) p12: avg#(xs) -> quot#(hd(sum(xs)),length(xs)) p13: avg#(xs) -> hd#(sum(xs)) p14: avg#(xs) -> sum#(xs) p15: avg#(xs) -> length#(xs) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The estimated dependency graph contains the following SCCs: {p5} {p3} {p1} {p2} {p9} {p8} {p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(++(xs,|:|(x,|:|(y,ys)))) -> sum#(++(xs,sum(|:|(x,|:|(y,ys))))) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sum#_A(x1) = ((0,0),(1,0)) x1 ++_A(x1,x2) = x1 + x2 + (1,3) |:|_A(x1,x2) = x2 + (3,2) sum_A(x1) = (5,1) +_A(x1,x2) = x1 + x2 + (1,1) |0|_A() = (1,1) s_A(x1) = (1,2) nil_A() = (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(|:|(x,|:|(y,xs))) -> sum#(|:|(+(x,y),xs)) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of r1, r2 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sum#_A(x1) = x1 |:|_A(x1,x2) = x2 + (1,1) +_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (2,1) |0|_A() = (1,1) s_A(x1) = (1,3) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),y) -> +#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = ((1,0),(1,0)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ++#(|:|(x,xs),ys) -> ++#(xs,ys) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: ++#_A(x1,x2) = ((1,0),(1,0)) x1 |:|_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(-(x,y),s(y)) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of r8, r9, r10 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: quot#_A(x1,x2) = x1 s_A(x1) = ((1,0),(1,1)) x1 + (2,1) -_A(x1,x2) = x1 + (1,2) |0|_A() = (1,3) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: -#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: length#(|:|(x,xs)) -> length#(xs) and R consists of: r1: +(|0|(),y) -> y r2: +(s(x),y) -> s(+(x,y)) r3: ++(nil(),ys) -> ys r4: ++(|:|(x,xs),ys) -> |:|(x,++(xs,ys)) r5: sum(|:|(x,nil())) -> |:|(x,nil()) r6: sum(|:|(x,|:|(y,xs))) -> sum(|:|(+(x,y),xs)) r7: sum(++(xs,|:|(x,|:|(y,ys)))) -> sum(++(xs,sum(|:|(x,|:|(y,ys))))) r8: -(x,|0|()) -> x r9: -(|0|(),s(y)) -> |0|() r10: -(s(x),s(y)) -> -(x,y) r11: quot(|0|(),s(y)) -> |0|() r12: quot(s(x),s(y)) -> s(quot(-(x,y),s(y))) r13: length(nil()) -> |0|() r14: length(|:|(x,xs)) -> s(length(xs)) r15: hd(|:|(x,xs)) -> x r16: avg(xs) -> quot(hd(sum(xs)),length(xs)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: length#_A(x1) = ((1,0),(1,1)) x1 |:|_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16 We remove them from the problem. Then no dependency pair remains.