YES We show the termination of the TRS R: f(x,y) -> g1(x,x,y) f(x,y) -> g1(y,x,x) f(x,y) -> g2(x,y,y) f(x,y) -> g2(y,y,x) g1(x,x,y) -> h(x,y) g1(y,x,x) -> h(x,y) g2(x,y,y) -> h(x,y) g2(y,y,x) -> h(x,y) h(x,x) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y) -> g1#(x,x,y) p2: f#(x,y) -> g1#(y,x,x) p3: f#(x,y) -> g2#(x,y,y) p4: f#(x,y) -> g2#(y,y,x) p5: g1#(x,x,y) -> h#(x,y) p6: g1#(y,x,x) -> h#(x,y) p7: g2#(x,y,y) -> h#(x,y) p8: g2#(y,y,x) -> h#(x,y) and R consists of: r1: f(x,y) -> g1(x,x,y) r2: f(x,y) -> g1(y,x,x) r3: f(x,y) -> g2(x,y,y) r4: f(x,y) -> g2(y,y,x) r5: g1(x,x,y) -> h(x,y) r6: g1(y,x,x) -> h(x,y) r7: g2(x,y,y) -> h(x,y) r8: g2(y,y,x) -> h(x,y) r9: h(x,x) -> x The estimated dependency graph contains the following SCCs: (no SCCs)