YES

We show the termination of the TRS R:

  U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
  U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
  U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
  U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
  U15(tt(),V2) -> U16(isNat(activate(V2)))
  U16(tt()) -> tt()
  U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
  U22(tt(),V1) -> U23(isNat(activate(V1)))
  U23(tt()) -> tt()
  U31(tt(),V2) -> U32(isNatKind(activate(V2)))
  U32(tt()) -> tt()
  U41(tt()) -> tt()
  U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
  U52(tt(),N) -> activate(N)
  U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
  U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
  U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
  U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
  isNat(n__0()) -> tt()
  isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
  isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
  isNatKind(n__0()) -> tt()
  isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
  isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
  plus(N,|0|()) -> U51(isNat(N),N)
  plus(N,s(M)) -> U61(isNat(M),M,N)
  |0|() -> n__0()
  plus(X1,X2) -> n__plus(X1,X2)
  s(X) -> n__s(X)
  activate(n__0()) -> |0|()
  activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
  activate(n__s(X)) -> s(activate(X))
  activate(X) -> X

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
p2: U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
p3: U11#(tt(),V1,V2) -> activate#(V1)
p4: U11#(tt(),V1,V2) -> activate#(V2)
p5: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
p6: U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
p7: U12#(tt(),V1,V2) -> activate#(V2)
p8: U12#(tt(),V1,V2) -> activate#(V1)
p9: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
p10: U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
p11: U13#(tt(),V1,V2) -> activate#(V2)
p12: U13#(tt(),V1,V2) -> activate#(V1)
p13: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
p14: U14#(tt(),V1,V2) -> isNat#(activate(V1))
p15: U14#(tt(),V1,V2) -> activate#(V1)
p16: U14#(tt(),V1,V2) -> activate#(V2)
p17: U15#(tt(),V2) -> U16#(isNat(activate(V2)))
p18: U15#(tt(),V2) -> isNat#(activate(V2))
p19: U15#(tt(),V2) -> activate#(V2)
p20: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
p21: U21#(tt(),V1) -> isNatKind#(activate(V1))
p22: U21#(tt(),V1) -> activate#(V1)
p23: U22#(tt(),V1) -> U23#(isNat(activate(V1)))
p24: U22#(tt(),V1) -> isNat#(activate(V1))
p25: U22#(tt(),V1) -> activate#(V1)
p26: U31#(tt(),V2) -> U32#(isNatKind(activate(V2)))
p27: U31#(tt(),V2) -> isNatKind#(activate(V2))
p28: U31#(tt(),V2) -> activate#(V2)
p29: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
p30: U51#(tt(),N) -> isNatKind#(activate(N))
p31: U51#(tt(),N) -> activate#(N)
p32: U52#(tt(),N) -> activate#(N)
p33: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
p34: U61#(tt(),M,N) -> isNatKind#(activate(M))
p35: U61#(tt(),M,N) -> activate#(M)
p36: U61#(tt(),M,N) -> activate#(N)
p37: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
p38: U62#(tt(),M,N) -> isNat#(activate(N))
p39: U62#(tt(),M,N) -> activate#(N)
p40: U62#(tt(),M,N) -> activate#(M)
p41: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
p42: U63#(tt(),M,N) -> isNatKind#(activate(N))
p43: U63#(tt(),M,N) -> activate#(N)
p44: U63#(tt(),M,N) -> activate#(M)
p45: U64#(tt(),M,N) -> s#(plus(activate(N),activate(M)))
p46: U64#(tt(),M,N) -> plus#(activate(N),activate(M))
p47: U64#(tt(),M,N) -> activate#(N)
p48: U64#(tt(),M,N) -> activate#(M)
p49: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
p50: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
p51: isNat#(n__plus(V1,V2)) -> activate#(V1)
p52: isNat#(n__plus(V1,V2)) -> activate#(V2)
p53: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
p54: isNat#(n__s(V1)) -> isNatKind#(activate(V1))
p55: isNat#(n__s(V1)) -> activate#(V1)
p56: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
p57: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
p58: isNatKind#(n__plus(V1,V2)) -> activate#(V1)
p59: isNatKind#(n__plus(V1,V2)) -> activate#(V2)
p60: isNatKind#(n__s(V1)) -> U41#(isNatKind(activate(V1)))
p61: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
p62: isNatKind#(n__s(V1)) -> activate#(V1)
p63: plus#(N,|0|()) -> U51#(isNat(N),N)
p64: plus#(N,|0|()) -> isNat#(N)
p65: plus#(N,s(M)) -> U61#(isNat(M),M,N)
p66: plus#(N,s(M)) -> isNat#(M)
p67: activate#(n__0()) -> |0|#()
p68: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2))
p69: activate#(n__plus(X1,X2)) -> activate#(X1)
p70: activate#(n__plus(X1,X2)) -> activate#(X2)
p71: activate#(n__s(X)) -> s#(activate(X))
p72: activate#(n__s(X)) -> activate#(X)

and R consists of:

r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
r5: U15(tt(),V2) -> U16(isNat(activate(V2)))
r6: U16(tt()) -> tt()
r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
r8: U22(tt(),V1) -> U23(isNat(activate(V1)))
r9: U23(tt()) -> tt()
r10: U31(tt(),V2) -> U32(isNatKind(activate(V2)))
r11: U32(tt()) -> tt()
r12: U41(tt()) -> tt()
r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
r14: U52(tt(),N) -> activate(N)
r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
r19: isNat(n__0()) -> tt()
r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
r22: isNatKind(n__0()) -> tt()
r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
r25: plus(N,|0|()) -> U51(isNat(N),N)
r26: plus(N,s(M)) -> U61(isNat(M),M,N)
r27: |0|() -> n__0()
r28: plus(X1,X2) -> n__plus(X1,X2)
r29: s(X) -> n__s(X)
r30: activate(n__0()) -> |0|()
r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
r32: activate(n__s(X)) -> s(activate(X))
r33: activate(X) -> X

The estimated dependency graph contains the following SCCs:

  {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p18, p19, p20, p21, p22, p24, p25, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p61, p62, p63, p64, p65, p66, p68, p69, p70, p72}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: U11#(tt(),V1,V2) -> U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
p2: U12#(tt(),V1,V2) -> activate#(V1)
p3: activate#(n__s(X)) -> activate#(X)
p4: activate#(n__plus(X1,X2)) -> activate#(X2)
p5: activate#(n__plus(X1,X2)) -> activate#(X1)
p6: activate#(n__plus(X1,X2)) -> plus#(activate(X1),activate(X2))
p7: plus#(N,s(M)) -> isNat#(M)
p8: isNat#(n__s(V1)) -> activate#(V1)
p9: isNat#(n__s(V1)) -> isNatKind#(activate(V1))
p10: isNatKind#(n__s(V1)) -> activate#(V1)
p11: isNatKind#(n__s(V1)) -> isNatKind#(activate(V1))
p12: isNatKind#(n__plus(V1,V2)) -> activate#(V2)
p13: isNatKind#(n__plus(V1,V2)) -> activate#(V1)
p14: isNatKind#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
p15: isNatKind#(n__plus(V1,V2)) -> U31#(isNatKind(activate(V1)),activate(V2))
p16: U31#(tt(),V2) -> activate#(V2)
p17: U31#(tt(),V2) -> isNatKind#(activate(V2))
p18: isNat#(n__s(V1)) -> U21#(isNatKind(activate(V1)),activate(V1))
p19: U21#(tt(),V1) -> activate#(V1)
p20: U21#(tt(),V1) -> isNatKind#(activate(V1))
p21: U21#(tt(),V1) -> U22#(isNatKind(activate(V1)),activate(V1))
p22: U22#(tt(),V1) -> activate#(V1)
p23: U22#(tt(),V1) -> isNat#(activate(V1))
p24: isNat#(n__plus(V1,V2)) -> activate#(V2)
p25: isNat#(n__plus(V1,V2)) -> activate#(V1)
p26: isNat#(n__plus(V1,V2)) -> isNatKind#(activate(V1))
p27: isNat#(n__plus(V1,V2)) -> U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
p28: U11#(tt(),V1,V2) -> activate#(V2)
p29: U11#(tt(),V1,V2) -> activate#(V1)
p30: U11#(tt(),V1,V2) -> isNatKind#(activate(V1))
p31: plus#(N,s(M)) -> U61#(isNat(M),M,N)
p32: U61#(tt(),M,N) -> activate#(N)
p33: U61#(tt(),M,N) -> activate#(M)
p34: U61#(tt(),M,N) -> isNatKind#(activate(M))
p35: U61#(tt(),M,N) -> U62#(isNatKind(activate(M)),activate(M),activate(N))
p36: U62#(tt(),M,N) -> activate#(M)
p37: U62#(tt(),M,N) -> activate#(N)
p38: U62#(tt(),M,N) -> isNat#(activate(N))
p39: U62#(tt(),M,N) -> U63#(isNat(activate(N)),activate(M),activate(N))
p40: U63#(tt(),M,N) -> activate#(M)
p41: U63#(tt(),M,N) -> activate#(N)
p42: U63#(tt(),M,N) -> isNatKind#(activate(N))
p43: U63#(tt(),M,N) -> U64#(isNatKind(activate(N)),activate(M),activate(N))
p44: U64#(tt(),M,N) -> activate#(M)
p45: U64#(tt(),M,N) -> activate#(N)
p46: U64#(tt(),M,N) -> plus#(activate(N),activate(M))
p47: plus#(N,|0|()) -> isNat#(N)
p48: plus#(N,|0|()) -> U51#(isNat(N),N)
p49: U51#(tt(),N) -> activate#(N)
p50: U51#(tt(),N) -> isNatKind#(activate(N))
p51: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))
p52: U52#(tt(),N) -> activate#(N)
p53: U12#(tt(),V1,V2) -> activate#(V2)
p54: U12#(tt(),V1,V2) -> isNatKind#(activate(V2))
p55: U12#(tt(),V1,V2) -> U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
p56: U13#(tt(),V1,V2) -> activate#(V1)
p57: U13#(tt(),V1,V2) -> activate#(V2)
p58: U13#(tt(),V1,V2) -> isNatKind#(activate(V2))
p59: U13#(tt(),V1,V2) -> U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
p60: U14#(tt(),V1,V2) -> activate#(V2)
p61: U14#(tt(),V1,V2) -> activate#(V1)
p62: U14#(tt(),V1,V2) -> isNat#(activate(V1))
p63: U14#(tt(),V1,V2) -> U15#(isNat(activate(V1)),activate(V2))
p64: U15#(tt(),V2) -> activate#(V2)
p65: U15#(tt(),V2) -> isNat#(activate(V2))

and R consists of:

r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
r5: U15(tt(),V2) -> U16(isNat(activate(V2)))
r6: U16(tt()) -> tt()
r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
r8: U22(tt(),V1) -> U23(isNat(activate(V1)))
r9: U23(tt()) -> tt()
r10: U31(tt(),V2) -> U32(isNatKind(activate(V2)))
r11: U32(tt()) -> tt()
r12: U41(tt()) -> tt()
r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
r14: U52(tt(),N) -> activate(N)
r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
r19: isNat(n__0()) -> tt()
r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
r22: isNatKind(n__0()) -> tt()
r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
r25: plus(N,|0|()) -> U51(isNat(N),N)
r26: plus(N,s(M)) -> U61(isNat(M),M,N)
r27: |0|() -> n__0()
r28: plus(X1,X2) -> n__plus(X1,X2)
r29: s(X) -> n__s(X)
r30: activate(n__0()) -> |0|()
r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
r32: activate(n__s(X)) -> s(activate(X))
r33: activate(X) -> X

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^2
    order: lexicographic order
    interpretations:
      U11#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + x3 + (6,0)
      tt_A() = (19,21)
      U12#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + x3 + (5,28)
      isNatKind_A(x1) = ((1,0),(1,1)) x1 + (39,0)
      activate_A(x1) = ((1,0),(1,1)) x1 + (0,56)
      activate#_A(x1) = ((1,0),(1,0)) x1 + (1,48)
      n__s_A(x1) = x1 + (4,1)
      n__plus_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (7,35)
      plus#_A(x1,x2) = x1 + ((1,0),(1,1)) x2 + (7,0)
      s_A(x1) = x1 + (4,2)
      isNat#_A(x1) = ((1,0),(1,1)) x1 + (0,7)
      isNatKind#_A(x1) = ((1,0),(1,0)) x1 + (1,50)
      U31#_A(x1,x2) = ((1,0),(1,0)) x2 + (2,48)
      U21#_A(x1,x2) = x2 + (3,0)
      U22#_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (2,45)
      U61#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + x2 + x3 + (10,32)
      isNat_A(x1) = ((1,0),(1,0)) x1 + (1,1)
      U62#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + x3 + (9,70)
      U63#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,0)) x3 + (8,32)
      U64#_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (8,50)
      |0|_A() = (19,2)
      U51#_A(x1,x2) = ((1,0),(1,0)) x2 + (2,47)
      U52#_A(x1,x2) = x2 + (2,47)
      U13#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + x3 + (4,28)
      U14#_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (3,28)
      U15#_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (2,45)
      U16_A(x1) = (20,0)
      U15_A(x1,x2) = x1 + (2,20)
      U64_A(x1,x2,x3) = x2 + ((1,0),(1,0)) x3 + (11,2)
      plus_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (7,36)
      U14_A(x1,x2,x3) = ((0,0),(1,0)) x1 + x2 + x3 + (4,0)
      U63_A(x1,x2,x3) = x2 + ((1,0),(1,0)) x3 + (11,18)
      U13_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + x3 + (5,0)
      U23_A(x1) = x1 + (1,2)
      U52_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (1,36)
      U62_A(x1,x2,x3) = ((0,0),(1,0)) x1 + x2 + ((1,0),(1,0)) x3 + (11,0)
      U12_A(x1,x2,x3) = x2 + x3 + (6,0)
      U22_A(x1,x2) = x2 + (3,1)
      U32_A(x1) = ((0,0),(1,0)) x1 + (20,5)
      U51_A(x1,x2) = ((0,0),(1,0)) x1 + x2 + (2,55)
      U61_A(x1,x2,x3) = ((1,0),(1,0)) x2 + ((1,0),(1,0)) x3 + (11,40)
      U11_A(x1,x2,x3) = x2 + x3 + (7,0)
      U21_A(x1,x2) = x2 + (4,0)
      U31_A(x1,x2) = x1 + ((0,0),(1,0)) x2 + (2,43)
      U41_A(x1) = (43,4)
      n__0_A() = (19,1)

The next rules are strictly ordered:

  p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p52, p53, p54, p55, p56, p57, p58, p59, p60, p61, p62, p63, p64, p65

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: U51#(tt(),N) -> U52#(isNatKind(activate(N)),activate(N))

and R consists of:

r1: U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
r2: U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
r3: U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
r4: U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
r5: U15(tt(),V2) -> U16(isNat(activate(V2)))
r6: U16(tt()) -> tt()
r7: U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
r8: U22(tt(),V1) -> U23(isNat(activate(V1)))
r9: U23(tt()) -> tt()
r10: U31(tt(),V2) -> U32(isNatKind(activate(V2)))
r11: U32(tt()) -> tt()
r12: U41(tt()) -> tt()
r13: U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
r14: U52(tt(),N) -> activate(N)
r15: U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
r16: U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
r17: U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
r18: U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
r19: isNat(n__0()) -> tt()
r20: isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
r21: isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
r22: isNatKind(n__0()) -> tt()
r23: isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
r24: isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
r25: plus(N,|0|()) -> U51(isNat(N),N)
r26: plus(N,s(M)) -> U61(isNat(M),M,N)
r27: |0|() -> n__0()
r28: plus(X1,X2) -> n__plus(X1,X2)
r29: s(X) -> n__s(X)
r30: activate(n__0()) -> |0|()
r31: activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
r32: activate(n__s(X)) -> s(activate(X))
r33: activate(X) -> X

The estimated dependency graph contains the following SCCs:

  (no SCCs)