YES We show the termination of the TRS R: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(|0|()) -> |0|() sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(|0|()) -> |0|() dbl(s(X)) -> s(s(dbl(X))) add(|0|(),X) -> X add(s(X),Y) -> s(add(X,Y)) first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) terms(X) -> n__terms(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: terms#(N) -> sqr#(N) p2: sqr#(s(X)) -> add#(sqr(X),dbl(X)) p3: sqr#(s(X)) -> sqr#(X) p4: sqr#(s(X)) -> dbl#(X) p5: dbl#(s(X)) -> dbl#(X) p6: add#(s(X),Y) -> add#(X,Y) p7: first#(s(X),cons(Y,Z)) -> activate#(Z) p8: activate#(n__terms(X)) -> terms#(X) p9: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p7, p9} {p3} {p6} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: first#_A(x1,x2) = x2 s_A(x1) = ((0,0),(1,0)) x1 + (1,1) cons_A(x1,x2) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,1) activate#_A(x1) = ((1,0),(1,1)) x1 + (0,2) n__first_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(s(X)) -> sqr#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: sqr#_A(x1) = ((0,0),(1,0)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: add#_A(x1,x2) = x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> dbl#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: dbl#_A(x1) = ((0,0),(1,0)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.