YES We show the termination of the TRS R: terms(N) -> cons(recip(sqr(N))) sqr(|0|()) -> |0|() sqr(s()) -> s() dbl(|0|()) -> |0|() dbl(s()) -> s() add(|0|(),X) -> X add(s(),Y) -> s() first(|0|(),X) -> nil() first(s(),cons(Y)) -> cons(Y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: terms#(N) -> sqr#(N) and R consists of: r1: terms(N) -> cons(recip(sqr(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s()) -> s() r4: dbl(|0|()) -> |0|() r5: dbl(s()) -> s() r6: add(|0|(),X) -> X r7: add(s(),Y) -> s() r8: first(|0|(),X) -> nil() r9: first(s(),cons(Y)) -> cons(Y) The estimated dependency graph contains the following SCCs: (no SCCs)