YES We show the termination of the TRS R: a__g(X) -> a__h(X) a__c() -> d() a__h(d()) -> a__g(c()) mark(g(X)) -> a__g(X) mark(h(X)) -> a__h(X) mark(c()) -> a__c() mark(d()) -> d() a__g(X) -> g(X) a__h(X) -> h(X) a__c() -> c() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__g#(X) -> a__h#(X) p2: a__h#(d()) -> a__g#(c()) p3: mark#(g(X)) -> a__g#(X) p4: mark#(h(X)) -> a__h#(X) p5: mark#(c()) -> a__c#() and R consists of: r1: a__g(X) -> a__h(X) r2: a__c() -> d() r3: a__h(d()) -> a__g(c()) r4: mark(g(X)) -> a__g(X) r5: mark(h(X)) -> a__h(X) r6: mark(c()) -> a__c() r7: mark(d()) -> d() r8: a__g(X) -> g(X) r9: a__h(X) -> h(X) r10: a__c() -> c() The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__g#(X) -> a__h#(X) p2: a__h#(d()) -> a__g#(c()) and R consists of: r1: a__g(X) -> a__h(X) r2: a__c() -> d() r3: a__h(d()) -> a__g(c()) r4: mark(g(X)) -> a__g(X) r5: mark(h(X)) -> a__h(X) r6: mark(c()) -> a__c() r7: mark(d()) -> d() r8: a__g(X) -> g(X) r9: a__h(X) -> h(X) r10: a__c() -> c() The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a__g#_A(x1) = x1 + (1,1) a__h#_A(x1) = x1 d_A() = (3,1) c_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.