YES We show the termination of the TRS R: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) from(X) -> cons(X,n__from(s(X))) cons(X1,X2) -> n__cons(X1,X2) from(X) -> n__from(X) activate(n__cons(X1,X2)) -> cons(X1,X2) activate(n__from(X)) -> from(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |2nd|#(cons(X,n__cons(Y,Z))) -> activate#(Y) p2: from#(X) -> cons#(X,n__from(s(X))) p3: activate#(n__cons(X1,X2)) -> cons#(X1,X2) p4: activate#(n__from(X)) -> from#(X) and R consists of: r1: |2nd|(cons(X,n__cons(Y,Z))) -> activate(Y) r2: from(X) -> cons(X,n__from(s(X))) r3: cons(X1,X2) -> n__cons(X1,X2) r4: from(X) -> n__from(X) r5: activate(n__cons(X1,X2)) -> cons(X1,X2) r6: activate(n__from(X)) -> from(X) r7: activate(X) -> X The estimated dependency graph contains the following SCCs: (no SCCs)