YES We show the termination of the TRS R: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p5: f#(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f#(x5,x5,x5,x5,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f#(x5,x5,x5,x5,x5) p3: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p4: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p5: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2,x3,x4,x5) = ((0,0),(1,0)) x5 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) |0|_A() = (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p4: f#(|0|(),|0|(),|0|(),s(x4),x5) -> f#(x4,x4,x4,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2,x3,x4,x5) = ((1,0),(1,1)) x4 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) |0|_A() = (1,1) The next rules are strictly ordered: p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) p3: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) p2: f#(|0|(),|0|(),s(x3),x4,x5) -> f#(x3,x3,x3,x4,x5) p3: f#(|0|(),s(x2),x3,x4,x5) -> f#(x2,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2,x3,x4,x5) = ((0,0),(1,0)) x2 + x3 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) |0|_A() = (1,1) The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x1),x2,x3,x4,x5) -> f#(x1,x2,x3,x4,x5) and R consists of: r1: f(s(x1),x2,x3,x4,x5) -> f(x1,x2,x3,x4,x5) r2: f(|0|(),s(x2),x3,x4,x5) -> f(x2,x2,x3,x4,x5) r3: f(|0|(),|0|(),s(x3),x4,x5) -> f(x3,x3,x3,x4,x5) r4: f(|0|(),|0|(),|0|(),s(x4),x5) -> f(x4,x4,x4,x4,x5) r5: f(|0|(),|0|(),|0|(),|0|(),s(x5)) -> f(x5,x5,x5,x5,x5) r6: f(|0|(),|0|(),|0|(),|0|(),|0|()) -> |0|() The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: f#_A(x1,x2,x3,x4,x5) = ((1,0),(1,1)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.