YES We show the termination of the TRS R: t(N) -> cs(r(q(N)),nt(ns(N))) q(|0|()) -> |0|() q(s(X)) -> s(p(q(X),d(X))) d(|0|()) -> |0|() d(s(X)) -> s(s(d(X))) p(|0|(),X) -> X p(X,|0|()) -> X p(s(X),s(Y)) -> s(s(p(X,Y))) f(|0|(),X) -> nil() f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) t(X) -> nt(X) s(X) -> ns(X) f(X1,X2) -> nf(X1,X2) a(nt(X)) -> t(a(X)) a(ns(X)) -> s(a(X)) a(nf(X1,X2)) -> f(a(X1),a(X2)) a(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: t#(N) -> q#(N) p2: q#(s(X)) -> s#(p(q(X),d(X))) p3: q#(s(X)) -> p#(q(X),d(X)) p4: q#(s(X)) -> q#(X) p5: q#(s(X)) -> d#(X) p6: d#(s(X)) -> s#(s(d(X))) p7: d#(s(X)) -> s#(d(X)) p8: d#(s(X)) -> d#(X) p9: p#(s(X),s(Y)) -> s#(s(p(X,Y))) p10: p#(s(X),s(Y)) -> s#(p(X,Y)) p11: p#(s(X),s(Y)) -> p#(X,Y) p12: f#(s(X),cs(Y,Z)) -> a#(Z) p13: a#(nt(X)) -> t#(a(X)) p14: a#(nt(X)) -> a#(X) p15: a#(ns(X)) -> s#(a(X)) p16: a#(ns(X)) -> a#(X) p17: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p18: a#(nf(X1,X2)) -> a#(X1) p19: a#(nf(X1,X2)) -> a#(X2) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The estimated dependency graph contains the following SCCs: {p12, p14, p16, p17, p18, p19} {p4} {p11} {p8} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(nf(X1,X2)) -> a#(X2) p2: a#(nf(X1,X2)) -> a#(X1) p3: a#(nf(X1,X2)) -> f#(a(X1),a(X2)) p4: f#(s(X),cs(Y,Z)) -> a#(Z) p5: a#(ns(X)) -> a#(X) p6: a#(nt(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = ((0,0),(1,0)) x1 nf_A(x1,x2) = x1 + x2 + (2,1) f#_A(x1,x2) = ((0,0),(1,0)) x2 + (0,1) a_A(x1) = x1 + (0,2) s_A(x1) = x1 + (0,2) cs_A(x1,x2) = x2 ns_A(x1) = x1 + (0,1) nt_A(x1) = x1 + (1,1) d_A(x1) = (0,5) |0|_A() = (0,4) p_A(x1,x2) = x1 + x2 q_A(x1) = (1,3) t_A(x1) = x1 + (1,2) r_A(x1) = (1,1) f_A(x1,x2) = x1 + x2 + (2,2) nil_A() = (0,3) The next rules are strictly ordered: p1, p2, p3, p4, p6 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(ns(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(ns(X)) -> a#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: a#_A(x1) = x1 ns_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: q#(s(X)) -> q#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: q#_A(x1) = ((0,0),(1,0)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: p#(s(X),s(Y)) -> p#(X,Y) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: p#_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: d#(s(X)) -> d#(X) and R consists of: r1: t(N) -> cs(r(q(N)),nt(ns(N))) r2: q(|0|()) -> |0|() r3: q(s(X)) -> s(p(q(X),d(X))) r4: d(|0|()) -> |0|() r5: d(s(X)) -> s(s(d(X))) r6: p(|0|(),X) -> X r7: p(X,|0|()) -> X r8: p(s(X),s(Y)) -> s(s(p(X,Y))) r9: f(|0|(),X) -> nil() r10: f(s(X),cs(Y,Z)) -> cs(Y,nf(X,a(Z))) r11: t(X) -> nt(X) r12: s(X) -> ns(X) r13: f(X1,X2) -> nf(X1,X2) r14: a(nt(X)) -> t(a(X)) r15: a(ns(X)) -> s(a(X)) r16: a(nf(X1,X2)) -> f(a(X1),a(X2)) r17: a(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: d#_A(x1) = x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 We remove them from the problem. Then no dependency pair remains.