YES We show the termination of the TRS R: f(x,y,z) -> g(<=(x,y),x,y,z) g(true(),x,y,z) -> z g(false(),x,y,z) -> f(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)) p(|0|()) -> |0|() p(s(x)) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y,z) -> g#(<=(x,y),x,y,z) p2: g#(false(),x,y,z) -> f#(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)) p3: g#(false(),x,y,z) -> f#(p(x),y,z) p4: g#(false(),x,y,z) -> p#(x) p5: g#(false(),x,y,z) -> f#(p(y),z,x) p6: g#(false(),x,y,z) -> p#(y) p7: g#(false(),x,y,z) -> f#(p(z),x,y) p8: g#(false(),x,y,z) -> p#(z) and R consists of: r1: f(x,y,z) -> g(<=(x,y),x,y,z) r2: g(true(),x,y,z) -> z r3: g(false(),x,y,z) -> f(f(p(x),y,z),f(p(y),z,x),f(p(z),x,y)) r4: p(|0|()) -> |0|() r5: p(s(x)) -> x The estimated dependency graph contains the following SCCs: (no SCCs)