YES We show the termination of the TRS R: f(g(i(a(),b(),|b'|()),c()),d()) -> if(e(),f(.(b(),c()),|d'|()),f(.(|b'|(),c()),|d'|())) f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),|d'|())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(g(i(a(),b(),|b'|()),c()),d()) -> f#(.(b(),c()),|d'|()) p2: f#(g(i(a(),b(),|b'|()),c()),d()) -> f#(.(|b'|(),c()),|d'|()) p3: f#(g(h(a(),b()),c()),d()) -> f#(.(b(),g(h(a(),b()),c())),d()) p4: f#(g(h(a(),b()),c()),d()) -> f#(c(),|d'|()) and R consists of: r1: f(g(i(a(),b(),|b'|()),c()),d()) -> if(e(),f(.(b(),c()),|d'|()),f(.(|b'|(),c()),|d'|())) r2: f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),|d'|())) The estimated dependency graph contains the following SCCs: (no SCCs)