YES We show the termination of the TRS R: flatten(nil()) -> nil() flatten(unit(x)) -> flatten(x) flatten(++(x,y)) -> ++(flatten(x),flatten(y)) flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y)) flatten(flatten(x)) -> flatten(x) rev(nil()) -> nil() rev(unit(x)) -> unit(x) rev(++(x,y)) -> ++(rev(y),rev(x)) rev(rev(x)) -> x ++(x,nil()) -> x ++(nil(),y) -> y ++(++(x,y),z) -> ++(x,++(y,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: flatten#(unit(x)) -> flatten#(x) p2: flatten#(++(x,y)) -> ++#(flatten(x),flatten(y)) p3: flatten#(++(x,y)) -> flatten#(x) p4: flatten#(++(x,y)) -> flatten#(y) p5: flatten#(++(unit(x),y)) -> ++#(flatten(x),flatten(y)) p6: flatten#(++(unit(x),y)) -> flatten#(x) p7: flatten#(++(unit(x),y)) -> flatten#(y) p8: rev#(++(x,y)) -> ++#(rev(y),rev(x)) p9: rev#(++(x,y)) -> rev#(y) p10: rev#(++(x,y)) -> rev#(x) p11: ++#(++(x,y),z) -> ++#(x,++(y,z)) p12: ++#(++(x,y),z) -> ++#(y,z) and R consists of: r1: flatten(nil()) -> nil() r2: flatten(unit(x)) -> flatten(x) r3: flatten(++(x,y)) -> ++(flatten(x),flatten(y)) r4: flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y)) r5: flatten(flatten(x)) -> flatten(x) r6: rev(nil()) -> nil() r7: rev(unit(x)) -> unit(x) r8: rev(++(x,y)) -> ++(rev(y),rev(x)) r9: rev(rev(x)) -> x r10: ++(x,nil()) -> x r11: ++(nil(),y) -> y r12: ++(++(x,y),z) -> ++(x,++(y,z)) The estimated dependency graph contains the following SCCs: {p1, p3, p4, p6, p7} {p9, p10} {p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: flatten#(unit(x)) -> flatten#(x) p2: flatten#(++(unit(x),y)) -> flatten#(y) p3: flatten#(++(unit(x),y)) -> flatten#(x) p4: flatten#(++(x,y)) -> flatten#(y) p5: flatten#(++(x,y)) -> flatten#(x) and R consists of: r1: flatten(nil()) -> nil() r2: flatten(unit(x)) -> flatten(x) r3: flatten(++(x,y)) -> ++(flatten(x),flatten(y)) r4: flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y)) r5: flatten(flatten(x)) -> flatten(x) r6: rev(nil()) -> nil() r7: rev(unit(x)) -> unit(x) r8: rev(++(x,y)) -> ++(rev(y),rev(x)) r9: rev(rev(x)) -> x r10: ++(x,nil()) -> x r11: ++(nil(),y) -> y r12: ++(++(x,y),z) -> ++(x,++(y,z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: flatten#_A(x1) = ((1,0),(1,1)) x1 unit_A(x1) = ((1,0),(1,1)) x1 + (1,1) ++_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rev#(++(x,y)) -> rev#(x) p2: rev#(++(x,y)) -> rev#(y) and R consists of: r1: flatten(nil()) -> nil() r2: flatten(unit(x)) -> flatten(x) r3: flatten(++(x,y)) -> ++(flatten(x),flatten(y)) r4: flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y)) r5: flatten(flatten(x)) -> flatten(x) r6: rev(nil()) -> nil() r7: rev(unit(x)) -> unit(x) r8: rev(++(x,y)) -> ++(rev(y),rev(x)) r9: rev(rev(x)) -> x r10: ++(x,nil()) -> x r11: ++(nil(),y) -> y r12: ++(++(x,y),z) -> ++(x,++(y,z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: rev#_A(x1) = ((1,0),(1,0)) x1 ++_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ++#(++(x,y),z) -> ++#(x,++(y,z)) p2: ++#(++(x,y),z) -> ++#(y,z) and R consists of: r1: flatten(nil()) -> nil() r2: flatten(unit(x)) -> flatten(x) r3: flatten(++(x,y)) -> ++(flatten(x),flatten(y)) r4: flatten(++(unit(x),y)) -> ++(flatten(x),flatten(y)) r5: flatten(flatten(x)) -> flatten(x) r6: rev(nil()) -> nil() r7: rev(unit(x)) -> unit(x) r8: rev(++(x,y)) -> ++(rev(y),rev(x)) r9: rev(rev(x)) -> x r10: ++(x,nil()) -> x r11: ++(nil(),y) -> y r12: ++(++(x,y),z) -> ++(x,++(y,z)) The set of usable rules consists of r10, r11, r12 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: ++#_A(x1,x2) = x1 ++_A(x1,x2) = x1 + x2 + (1,1) nil_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.