YES We show the termination of the TRS R: not(not(x)) -> x not(or(x,y)) -> and(not(x),not(y)) not(and(x,y)) -> or(not(x),not(y)) and(x,or(y,z)) -> or(and(x,y),and(x,z)) and(or(y,z),x) -> or(and(x,y),and(x,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(or(x,y)) -> and#(not(x),not(y)) p2: not#(or(x,y)) -> not#(x) p3: not#(or(x,y)) -> not#(y) p4: not#(and(x,y)) -> not#(x) p5: not#(and(x,y)) -> not#(y) p6: and#(x,or(y,z)) -> and#(x,y) p7: and#(x,or(y,z)) -> and#(x,z) p8: and#(or(y,z),x) -> and#(x,y) p9: and#(or(y,z),x) -> and#(x,z) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(x),not(y)) r3: not(and(x,y)) -> or(not(x),not(y)) r4: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r5: and(or(y,z),x) -> or(and(x,y),and(x,z)) The estimated dependency graph contains the following SCCs: {p2, p3, p4, p5} {p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: not#(and(x,y)) -> not#(y) p2: not#(and(x,y)) -> not#(x) p3: not#(or(x,y)) -> not#(y) p4: not#(or(x,y)) -> not#(x) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(x),not(y)) r3: not(and(x,y)) -> or(not(x),not(y)) r4: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r5: and(or(y,z),x) -> or(and(x,y),and(x,z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: not#_A(x1) = x1 and_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) or_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(x,or(y,z)) -> and#(x,y) p2: and#(or(y,z),x) -> and#(x,z) p3: and#(or(y,z),x) -> and#(x,y) p4: and#(x,or(y,z)) -> and#(x,z) and R consists of: r1: not(not(x)) -> x r2: not(or(x,y)) -> and(not(x),not(y)) r3: not(and(x,y)) -> or(not(x),not(y)) r4: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r5: and(or(y,z),x) -> or(and(x,y),and(x,z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: and#_A(x1,x2) = x1 + x2 or_A(x1,x2) = ((1,0),(1,1)) x1 + x2 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains.