YES We show the termination of the TRS R: |0|(|#|()) -> |#|() +(x,|#|()) -> x +(|#|(),x) -> x +(|0|(x),|0|(y)) -> |0|(+(x,y)) +(|0|(x),|1|(y)) -> |1|(+(x,y)) +(|1|(x),|0|(y)) -> |1|(+(x,y)) +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) +(x,+(y,z)) -> +(+(x,y),z) -(x,|#|()) -> x -(|#|(),x) -> |#|() -(|0|(x),|0|(y)) -> |0|(-(x,y)) -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) -(|1|(x),|0|(y)) -> |1|(-(x,y)) -(|1|(x),|1|(y)) -> |0|(-(x,y)) not(false()) -> true() not(true()) -> false() and(x,true()) -> x and(x,false()) -> false() if(true(),x,y) -> x if(false(),x,y) -> y ge(|0|(x),|0|(y)) -> ge(x,y) ge(|0|(x),|1|(y)) -> not(ge(y,x)) ge(|1|(x),|0|(y)) -> ge(x,y) ge(|1|(x),|1|(y)) -> ge(x,y) ge(x,|#|()) -> true() ge(|#|(),|1|(x)) -> false() ge(|#|(),|0|(x)) -> ge(|#|(),x) val(l(x)) -> x val(n(x,y,z)) -> x min(l(x)) -> x min(n(x,y,z)) -> min(y) max(l(x)) -> x max(n(x,y,z)) -> max(z) bs(l(x)) -> true() bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) size(l(x)) -> |1|(|#|()) size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) wb(l(x)) -> true() wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> |0|#(+(x,y)) p2: +#(|0|(x),|0|(y)) -> +#(x,y) p3: +#(|0|(x),|1|(y)) -> +#(x,y) p4: +#(|1|(x),|0|(y)) -> +#(x,y) p5: +#(|1|(x),|1|(y)) -> |0|#(+(+(x,y),|1|(|#|()))) p6: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p7: +#(|1|(x),|1|(y)) -> +#(x,y) p8: +#(x,+(y,z)) -> +#(+(x,y),z) p9: +#(x,+(y,z)) -> +#(x,y) p10: -#(|0|(x),|0|(y)) -> |0|#(-(x,y)) p11: -#(|0|(x),|0|(y)) -> -#(x,y) p12: -#(|0|(x),|1|(y)) -> -#(-(x,y),|1|(|#|())) p13: -#(|0|(x),|1|(y)) -> -#(x,y) p14: -#(|1|(x),|0|(y)) -> -#(x,y) p15: -#(|1|(x),|1|(y)) -> |0|#(-(x,y)) p16: -#(|1|(x),|1|(y)) -> -#(x,y) p17: ge#(|0|(x),|0|(y)) -> ge#(x,y) p18: ge#(|0|(x),|1|(y)) -> not#(ge(y,x)) p19: ge#(|0|(x),|1|(y)) -> ge#(y,x) p20: ge#(|1|(x),|0|(y)) -> ge#(x,y) p21: ge#(|1|(x),|1|(y)) -> ge#(x,y) p22: ge#(|#|(),|0|(x)) -> ge#(|#|(),x) p23: min#(n(x,y,z)) -> min#(y) p24: max#(n(x,y,z)) -> max#(z) p25: bs#(n(x,y,z)) -> and#(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) p26: bs#(n(x,y,z)) -> and#(ge(x,max(y)),ge(min(z),x)) p27: bs#(n(x,y,z)) -> ge#(x,max(y)) p28: bs#(n(x,y,z)) -> max#(y) p29: bs#(n(x,y,z)) -> ge#(min(z),x) p30: bs#(n(x,y,z)) -> min#(z) p31: bs#(n(x,y,z)) -> and#(bs(y),bs(z)) p32: bs#(n(x,y,z)) -> bs#(y) p33: bs#(n(x,y,z)) -> bs#(z) p34: size#(n(x,y,z)) -> +#(+(size(x),size(y)),|1|(|#|())) p35: size#(n(x,y,z)) -> +#(size(x),size(y)) p36: size#(n(x,y,z)) -> size#(x) p37: size#(n(x,y,z)) -> size#(y) p38: wb#(n(x,y,z)) -> and#(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) p39: wb#(n(x,y,z)) -> if#(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))) p40: wb#(n(x,y,z)) -> ge#(size(y),size(z)) p41: wb#(n(x,y,z)) -> size#(y) p42: wb#(n(x,y,z)) -> size#(z) p43: wb#(n(x,y,z)) -> ge#(|1|(|#|()),-(size(y),size(z))) p44: wb#(n(x,y,z)) -> -#(size(y),size(z)) p45: wb#(n(x,y,z)) -> ge#(|1|(|#|()),-(size(z),size(y))) p46: wb#(n(x,y,z)) -> -#(size(z),size(y)) p47: wb#(n(x,y,z)) -> and#(wb(y),wb(z)) p48: wb#(n(x,y,z)) -> wb#(y) p49: wb#(n(x,y,z)) -> wb#(z) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The estimated dependency graph contains the following SCCs: {p48, p49} {p36, p37} {p2, p3, p4, p6, p7, p8, p9} {p11, p12, p13, p14, p16} {p32, p33} {p17, p19, p20, p21} {p22} {p23} {p24} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: wb#(n(x,y,z)) -> wb#(z) p2: wb#(n(x,y,z)) -> wb#(y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: wb#_A(x1) = ((1,0),(1,1)) x1 n_A(x1,x2,x3) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: size#(n(x,y,z)) -> size#(y) p2: size#(n(x,y,z)) -> size#(x) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: size#_A(x1) = ((1,0),(1,1)) x1 n_A(x1,x2,x3) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(|0|(x),|0|(y)) -> +#(x,y) p2: +#(x,+(y,z)) -> +#(x,y) p3: +#(x,+(y,z)) -> +#(+(x,y),z) p4: +#(|1|(x),|1|(y)) -> +#(x,y) p5: +#(|1|(x),|1|(y)) -> +#(+(x,y),|1|(|#|())) p6: +#(|0|(x),|1|(y)) -> +#(x,y) p7: +#(|1|(x),|0|(y)) -> +#(x,y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: +#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 |0|_A(x1) = x1 + (1,2) +_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,1)) x2 + (1,1) |1|_A(x1) = x1 + (4,8) |#|_A() = (1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(|0|(x),|0|(y)) -> -#(x,y) p2: -#(|1|(x),|1|(y)) -> -#(x,y) p3: -#(|1|(x),|0|(y)) -> -#(x,y) p4: -#(|0|(x),|1|(y)) -> -#(x,y) p5: -#(|0|(x),|1|(y)) -> -#(-(x,y),|1|(|#|())) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of r1, r9, r10, r11, r12, r13, r14 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: -#_A(x1,x2) = ((1,0),(1,1)) x1 + x2 |0|_A(x1) = x1 + (7,11) |1|_A(x1) = ((1,0),(1,1)) x1 + (4,1) -_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,18) |#|_A() = (1,1) The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: bs#(n(x,y,z)) -> bs#(z) p2: bs#(n(x,y,z)) -> bs#(y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: bs#_A(x1) = ((1,0),(1,1)) x1 n_A(x1,x2,x3) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + ((1,0),(1,1)) x3 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ge#(|0|(x),|0|(y)) -> ge#(x,y) p2: ge#(|1|(x),|1|(y)) -> ge#(x,y) p3: ge#(|1|(x),|0|(y)) -> ge#(x,y) p4: ge#(|0|(x),|1|(y)) -> ge#(y,x) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: ge#_A(x1,x2) = x1 + x2 |0|_A(x1) = ((1,0),(1,1)) x1 + (1,1) |1|_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ge#(|#|(),|0|(x)) -> ge#(|#|(),x) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: ge#_A(x1,x2) = x2 |#|_A() = (0,0) |0|_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: min#(n(x,y,z)) -> min#(y) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: min#_A(x1) = x1 n_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((1,0),(1,1)) x2 + ((0,0),(1,0)) x3 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: max#(n(x,y,z)) -> max#(z) and R consists of: r1: |0|(|#|()) -> |#|() r2: +(x,|#|()) -> x r3: +(|#|(),x) -> x r4: +(|0|(x),|0|(y)) -> |0|(+(x,y)) r5: +(|0|(x),|1|(y)) -> |1|(+(x,y)) r6: +(|1|(x),|0|(y)) -> |1|(+(x,y)) r7: +(|1|(x),|1|(y)) -> |0|(+(+(x,y),|1|(|#|()))) r8: +(x,+(y,z)) -> +(+(x,y),z) r9: -(x,|#|()) -> x r10: -(|#|(),x) -> |#|() r11: -(|0|(x),|0|(y)) -> |0|(-(x,y)) r12: -(|0|(x),|1|(y)) -> |1|(-(-(x,y),|1|(|#|()))) r13: -(|1|(x),|0|(y)) -> |1|(-(x,y)) r14: -(|1|(x),|1|(y)) -> |0|(-(x,y)) r15: not(false()) -> true() r16: not(true()) -> false() r17: and(x,true()) -> x r18: and(x,false()) -> false() r19: if(true(),x,y) -> x r20: if(false(),x,y) -> y r21: ge(|0|(x),|0|(y)) -> ge(x,y) r22: ge(|0|(x),|1|(y)) -> not(ge(y,x)) r23: ge(|1|(x),|0|(y)) -> ge(x,y) r24: ge(|1|(x),|1|(y)) -> ge(x,y) r25: ge(x,|#|()) -> true() r26: ge(|#|(),|1|(x)) -> false() r27: ge(|#|(),|0|(x)) -> ge(|#|(),x) r28: val(l(x)) -> x r29: val(n(x,y,z)) -> x r30: min(l(x)) -> x r31: min(n(x,y,z)) -> min(y) r32: max(l(x)) -> x r33: max(n(x,y,z)) -> max(z) r34: bs(l(x)) -> true() r35: bs(n(x,y,z)) -> and(and(ge(x,max(y)),ge(min(z),x)),and(bs(y),bs(z))) r36: size(l(x)) -> |1|(|#|()) r37: size(n(x,y,z)) -> +(+(size(x),size(y)),|1|(|#|())) r38: wb(l(x)) -> true() r39: wb(n(x,y,z)) -> and(if(ge(size(y),size(z)),ge(|1|(|#|()),-(size(y),size(z))),ge(|1|(|#|()),-(size(z),size(y)))),and(wb(y),wb(z))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: max#_A(x1) = x1 n_A(x1,x2,x3) = ((0,0),(1,0)) x1 + ((0,0),(1,0)) x2 + ((1,0),(1,1)) x3 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.