YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldB(t,|0|()) -> t foldB(t,s(n)) -> f(foldB(t,n),B()) foldC(t,|0|()) -> t foldC(t,s(n)) -> f(foldC(t,n),C()) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: foldB#(t,s(n)) -> foldB#(t,n) p3: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p4: foldC#(t,s(n)) -> foldC#(t,n) p5: f#(t,x) -> |f'|#(t,g(x)) p6: f#(t,x) -> g#(x) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p8: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p9: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p10: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p4: foldB#(t,s(n)) -> foldB#(t,n) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p7: foldC#(t,s(n)) -> foldC#(t,n) p8: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p9: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: foldB#_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (0,8) s_A(x1) = ((1,0),(1,1)) x1 + (12,1) f#_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (6,6) foldB_A(x1,x2) = ((1,0),(1,0)) x1 + x2 + (1,2) B_A() = (4,7) |f'|#_A(x1,x2) = ((1,0),(1,0)) x1 + ((1,0),(1,0)) x2 + (4,4) g_A(x1) = ((1,0),(1,1)) x1 + (1,1) triple_A(x1,x2,x3) = x2 + x3 + (1,0) A_A() = (1,7) |0|_A() = (1,1) |f''|#_A(x1) = ((1,0),(1,1)) x1 + (2,0) foldC#_A(x1,x2) = ((1,0),(1,0)) x1 + x2 foldC_A(x1,x2) = x1 + x2 + (1,2) C_A() = (4,1) |f''|_A(x1) = ((1,0),(1,1)) x1 + (3,2) |f'|_A(x1,x2) = x1 + (12,1) f_A(x1,x2) = x1 + (12,1) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9 We remove them from the problem. Then no dependency pair remains.