YES We show the termination of the TRS R: app(app(fmap(),fnil()),x) -> nil() app(app(fmap(),app(app(fcons(),f),t)),x) -> app(app(cons(),app(f,x)),app(app(fmap(),t),x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(fmap(),app(app(fcons(),f),t)),x) -> app#(app(cons(),app(f,x)),app(app(fmap(),t),x)) p2: app#(app(fmap(),app(app(fcons(),f),t)),x) -> app#(cons(),app(f,x)) p3: app#(app(fmap(),app(app(fcons(),f),t)),x) -> app#(f,x) p4: app#(app(fmap(),app(app(fcons(),f),t)),x) -> app#(app(fmap(),t),x) p5: app#(app(fmap(),app(app(fcons(),f),t)),x) -> app#(fmap(),t) and R consists of: r1: app(app(fmap(),fnil()),x) -> nil() r2: app(app(fmap(),app(app(fcons(),f),t)),x) -> app(app(cons(),app(f,x)),app(app(fmap(),t),x)) The estimated dependency graph contains the following SCCs: {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(fmap(),app(app(fcons(),f),t)),x) -> app#(f,x) p2: app#(app(fmap(),app(app(fcons(),f),t)),x) -> app#(app(fmap(),t),x) and R consists of: r1: app(app(fmap(),fnil()),x) -> nil() r2: app(app(fmap(),app(app(fcons(),f),t)),x) -> app(app(cons(),app(f,x)),app(app(fmap(),t),x)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: app#_A(x1,x2) = x1 app_A(x1,x2) = x1 + x2 + (0,1) fmap_A() = (1,1) fcons_A() = (1,0) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.