YES We show the termination of the TRS R: half(|0|()) -> |0|() half(s(s(x))) -> s(half(x)) log(s(|0|())) -> |0|() log(s(s(x))) -> s(log(s(half(x)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) p2: log#(s(s(x))) -> log#(s(half(x))) p3: log#(s(s(x))) -> half#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(s(x))) -> s(half(x)) r3: log(s(|0|())) -> |0|() r4: log(s(s(x))) -> s(log(s(half(x)))) The estimated dependency graph contains the following SCCs: {p2} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: log#(s(s(x))) -> log#(s(half(x))) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(s(x))) -> s(half(x)) r3: log(s(|0|())) -> |0|() r4: log(s(s(x))) -> s(log(s(half(x)))) The set of usable rules consists of r1, r2 Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: log#_A(x1) = ((1,0),(1,0)) x1 s_A(x1) = x1 + (2,2) half_A(x1) = x1 + (1,1) |0|_A() = (1,2) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: half(|0|()) -> |0|() r2: half(s(s(x))) -> s(half(x)) r3: log(s(|0|())) -> |0|() r4: log(s(s(x))) -> s(log(s(half(x)))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: lexicographic order interpretations: half#_A(x1) = ((1,0),(1,0)) x1 s_A(x1) = ((1,0),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.