YES We show the termination of the TRS R: a(lambda(x),y) -> lambda(a(x,|1|())) a(lambda(x),y) -> lambda(a(x,a(y,t()))) a(a(x,y),z) -> a(x,a(y,z)) lambda(x) -> x a(x,y) -> x a(x,y) -> y -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(lambda(x),y) -> lambda#(a(x,|1|())) p2: a#(lambda(x),y) -> a#(x,|1|()) p3: a#(lambda(x),y) -> lambda#(a(x,a(y,t()))) p4: a#(lambda(x),y) -> a#(x,a(y,t())) p5: a#(lambda(x),y) -> a#(y,t()) p6: a#(a(x,y),z) -> a#(x,a(y,z)) p7: a#(a(x,y),z) -> a#(y,z) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: lambda(x) -> x r5: a(x,y) -> x r6: a(x,y) -> y The estimated dependency graph contains the following SCCs: {p2, p4, p5, p6, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(lambda(x),y) -> a#(x,|1|()) p2: a#(a(x,y),z) -> a#(y,z) p3: a#(a(x,y),z) -> a#(x,a(y,z)) p4: a#(lambda(x),y) -> a#(y,t()) p5: a#(lambda(x),y) -> a#(x,a(y,t())) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: lambda(x) -> x r5: a(x,y) -> x r6: a(x,y) -> y The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: a#_A(x1,x2) = x1 + x2 lambda_A(x1) = x1 + 1 |1|_A() = 0 a_A(x1,x2) = x1 + x2 t_A() = 0 2. lexicographic path order with precedence: precedence: a > lambda > |1| > a# > t argument filter: pi(a#) = [] pi(lambda) = [] pi(|1|) = [] pi(a) = [1, 2] pi(t) = [] The next rules are strictly ordered: p1, p4, p5 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x,y),z) -> a#(y,z) p2: a#(a(x,y),z) -> a#(x,a(y,z)) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: lambda(x) -> x r5: a(x,y) -> x r6: a(x,y) -> y The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(a(x,y),z) -> a#(y,z) p2: a#(a(x,y),z) -> a#(x,a(y,z)) and R consists of: r1: a(lambda(x),y) -> lambda(a(x,|1|())) r2: a(lambda(x),y) -> lambda(a(x,a(y,t()))) r3: a(a(x,y),z) -> a(x,a(y,z)) r4: lambda(x) -> x r5: a(x,y) -> x r6: a(x,y) -> y The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: a#_A(x1,x2) = x1 a_A(x1,x2) = x1 + x2 lambda_A(x1) = x1 + 1 |1|_A() = 0 t_A() = 0 2. lexicographic path order with precedence: precedence: a# > t > |1| > a > lambda argument filter: pi(a#) = 1 pi(a) = [1, 2] pi(lambda) = [] pi(|1|) = [] pi(t) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.