YES We show the termination of the TRS R: f(f(x)) -> f(g(f(x),x)) f(f(x)) -> f(h(f(x),f(x))) g(x,y) -> y h(x,x) -> g(x,|0|()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) p2: f#(f(x)) -> g#(f(x),x) p3: f#(f(x)) -> f#(h(f(x),f(x))) p4: f#(f(x)) -> h#(f(x),f(x)) p5: h#(x,x) -> g#(x,|0|()) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The estimated dependency graph contains the following SCCs: {p1, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(x)) -> f#(g(f(x),x)) p2: f#(f(x)) -> f#(h(f(x),f(x))) and R consists of: r1: f(f(x)) -> f(g(f(x),x)) r2: f(f(x)) -> f(h(f(x),f(x))) r3: g(x,y) -> y r4: h(x,x) -> g(x,|0|()) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: f#_A(x1) = x1 f_A(x1) = x1 + 3 g_A(x1,x2) = x2 + 1 h_A(x1,x2) = 2 |0|_A() = 0 2. lexicographic path order with precedence: precedence: |0| > g > f > h > f# argument filter: pi(f#) = 1 pi(f) = [1] pi(g) = 2 pi(h) = [] pi(|0|) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.