YES We show the termination of the TRS R: +(*(x,y),*(x,z)) -> *(x,+(y,z)) +(+(x,y),z) -> +(x,+(y,z)) +(*(x,y),+(*(x,z),u())) -> +(*(x,+(y,z)),u()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(*(x,y),*(x,z)) -> +#(y,z) p2: +#(+(x,y),z) -> +#(x,+(y,z)) p3: +#(+(x,y),z) -> +#(y,z) p4: +#(*(x,y),+(*(x,z),u())) -> +#(*(x,+(y,z)),u()) p5: +#(*(x,y),+(*(x,z),u())) -> +#(y,z) and R consists of: r1: +(*(x,y),*(x,z)) -> *(x,+(y,z)) r2: +(+(x,y),z) -> +(x,+(y,z)) r3: +(*(x,y),+(*(x,z),u())) -> +(*(x,+(y,z)),u()) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(*(x,y),*(x,z)) -> +#(y,z) p2: +#(*(x,y),+(*(x,z),u())) -> +#(y,z) p3: +#(+(x,y),z) -> +#(y,z) p4: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: +(*(x,y),*(x,z)) -> *(x,+(y,z)) r2: +(+(x,y),z) -> +(x,+(y,z)) r3: +(*(x,y),+(*(x,z),u())) -> +(*(x,+(y,z)),u()) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: +#_A(x1,x2) = x1 + x2 *_A(x1,x2) = x1 + x2 + 1 +_A(x1,x2) = x1 + x2 + 1 u_A() = 1 2. lexicographic path order with precedence: precedence: +# > u > * > + argument filter: pi(+#) = [2] pi(*) = [1, 2] pi(+) = 2 pi(u) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: +(*(x,y),*(x,z)) -> *(x,+(y,z)) r2: +(+(x,y),z) -> +(x,+(y,z)) r3: +(*(x,y),+(*(x,z),u())) -> +(*(x,+(y,z)),u()) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(+(x,y),z) -> +#(x,+(y,z)) and R consists of: r1: +(*(x,y),*(x,z)) -> *(x,+(y,z)) r2: +(+(x,y),z) -> +(x,+(y,z)) r3: +(*(x,y),+(*(x,z),u())) -> +(*(x,+(y,z)),u()) The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: +#_A(x1,x2) = x1 + x2 +_A(x1,x2) = x1 + x2 + 1 *_A(x1,x2) = x1 + x2 + 1 u_A() = 1 2. lexicographic path order with precedence: precedence: u > * > + > +# argument filter: pi(+#) = [1] pi(+) = [1, 2] pi(*) = 1 pi(u) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.