YES We show the termination of the TRS R: O(|0|()) -> |0|() +(|0|(),x) -> x +(x,|0|()) -> x +(O(x),O(y)) -> O(+(x,y)) +(O(x),I(y)) -> I(+(x,y)) +(I(x),O(y)) -> I(+(x,y)) +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) *(|0|(),x) -> |0|() *(x,|0|()) -> |0|() *(O(x),y) -> O(*(x,y)) *(I(x),y) -> +(O(*(x,y)),y) -(x,|0|()) -> x -(|0|(),x) -> |0|() -(O(x),O(y)) -> O(-(x,y)) -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) -(I(x),O(y)) -> I(-(x,y)) -(I(x),I(y)) -> O(-(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> O#(+(x,y)) p2: +#(O(x),O(y)) -> +#(x,y) p3: +#(O(x),I(y)) -> +#(x,y) p4: +#(I(x),O(y)) -> +#(x,y) p5: +#(I(x),I(y)) -> O#(+(+(x,y),I(|0|()))) p6: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p7: +#(I(x),I(y)) -> +#(x,y) p8: *#(O(x),y) -> O#(*(x,y)) p9: *#(O(x),y) -> *#(x,y) p10: *#(I(x),y) -> +#(O(*(x,y)),y) p11: *#(I(x),y) -> O#(*(x,y)) p12: *#(I(x),y) -> *#(x,y) p13: -#(O(x),O(y)) -> O#(-(x,y)) p14: -#(O(x),O(y)) -> -#(x,y) p15: -#(O(x),I(y)) -> -#(-(x,y),I(|1|())) p16: -#(O(x),I(y)) -> -#(x,y) p17: -#(I(x),O(y)) -> -#(x,y) p18: -#(I(x),I(y)) -> O#(-(x,y)) p19: -#(I(x),I(y)) -> -#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The estimated dependency graph contains the following SCCs: {p9, p12} {p2, p3, p4, p6, p7} {p14, p15, p16, p17, p19} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(I(x),y) -> *#(x,y) p2: *#(O(x),y) -> *#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: *#_A(x1,x2) = x1 + x2 I_A(x1) = x1 + 1 O_A(x1) = x1 + 1 2. lexicographic path order with precedence: precedence: *# > O > I argument filter: pi(*#) = [2] pi(I) = [] pi(O) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(O(x),O(y)) -> +#(x,y) p2: +#(I(x),I(y)) -> +#(x,y) p3: +#(I(x),I(y)) -> +#(+(x,y),I(|0|())) p4: +#(O(x),I(y)) -> +#(x,y) p5: +#(I(x),O(y)) -> +#(x,y) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: +#_A(x1,x2) = x1 + x2 O_A(x1) = x1 + 1 I_A(x1) = x1 + 4 +_A(x1,x2) = x1 + x2 + 1 |0|_A() = 1 2. lexicographic path order with precedence: precedence: +# > I > O > + > |0| argument filter: pi(+#) = 1 pi(O) = [1] pi(I) = [] pi(+) = [] pi(|0|) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(O(x),O(y)) -> -#(x,y) p2: -#(I(x),I(y)) -> -#(x,y) p3: -#(I(x),O(y)) -> -#(x,y) p4: -#(O(x),I(y)) -> -#(x,y) p5: -#(O(x),I(y)) -> -#(-(x,y),I(|1|())) and R consists of: r1: O(|0|()) -> |0|() r2: +(|0|(),x) -> x r3: +(x,|0|()) -> x r4: +(O(x),O(y)) -> O(+(x,y)) r5: +(O(x),I(y)) -> I(+(x,y)) r6: +(I(x),O(y)) -> I(+(x,y)) r7: +(I(x),I(y)) -> O(+(+(x,y),I(|0|()))) r8: *(|0|(),x) -> |0|() r9: *(x,|0|()) -> |0|() r10: *(O(x),y) -> O(*(x,y)) r11: *(I(x),y) -> +(O(*(x,y)),y) r12: -(x,|0|()) -> x r13: -(|0|(),x) -> |0|() r14: -(O(x),O(y)) -> O(-(x,y)) r15: -(O(x),I(y)) -> I(-(-(x,y),I(|1|()))) r16: -(I(x),O(y)) -> I(-(x,y)) r17: -(I(x),I(y)) -> O(-(x,y)) The set of usable rules consists of r1, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. matrix interpretations: carrier: N^1 order: standard order interpretations: -#_A(x1,x2) = x1 + x2 O_A(x1) = x1 + 7 I_A(x1) = x1 + 4 -_A(x1,x2) = x1 + x2 + 1 |1|_A() = 1 |0|_A() = 1 2. lexicographic path order with precedence: precedence: |0| > |1| > I > O > - > -# argument filter: pi(-#) = 1 pi(O) = [1] pi(I) = [1] pi(-) = [1] pi(|1|) = [] pi(|0|) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5 We remove them from the problem. Then no dependency pair remains.